Thomas Wischgoll
Wright State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Thomas Wischgoll.
IEEE Transactions on Visualization and Computer Graphics | 2001
Thomas Wischgoll; Gerik Scheuermann
The analysis and visualization of flows is a central problem in visualization. Topology-based methods have gained increasing interest in recent years. This article describes a method for the detection of closed streamlines in flows. It is based on a special treatment of cases where a streamline reenters a cell to prevent infinite cycling during streamline calculation. The algorithm checks for possible exits of a loop of crossed edges and detects structurally stable closed streamlines. These global features are not detected by conventional topology and feature detection algorithms.
Computers & Graphics | 2002
Xavier Tricoche; Thomas Wischgoll; Gerik Scheuermann; Hans Hagen
The paper presents a topology-based visualization method for time-dependent two-dimensional vector elds. A time interpolation enables the accurate tracking of critical points and closed orbits as well as the detection and identication of structural changes. This completely characterizes the topology of the unsteady ow. Bifurcation theory provides the theoretical framework. The results are conveyed by surfaces that separate subvolumes of uniform ow behavior in a three-dimensional space-time domain.
Biophysical Journal | 2009
Yunlong Huo; Benjamin Kaimovitz; Yoram Lanir; Thomas Wischgoll; Julien I. E. Hoffman; Ghassan S. Kassab
The blood flow in the myocardium has significant spatial heterogeneity. The objective of this study was to develop a biophysical model based on detailed anatomical data to determine the heterogeneity of regional myocardial flow during diastole. The model predictions were compared with experimental measurements in a diastolic porcine heart in the absence of vessel tone using nonradioactive fluorescent microsphere measurements. The results from the model and experimental measurements showed good agreement. The relative flow dispersion in the arrested, vasodilated heart was found to be 44% and 48% numerically and experimentally, respectively. Furthermore, the flow dispersion was found to have fractal characteristics with fractal dimensions (D) of 1.25 and 1.27 predicted by the model and validated by the experiments, respectively. This validated three-dimensional model of normal diastolic heart will play an important role in elucidating the spatial heterogeneity of coronary blood flow, and serve as a foundation for understanding the interplay between cardiac mechanics and coronary hemodynamics.
American Journal of Physiology-heart and Circulatory Physiology | 2009
Thomas Wischgoll; Jenny Susana Choy; Ghassan S. Kassab
The morphometry (diameters, length, and angles) of coronary arteries is related to their function. A simple, easy, and accurate image-based method to seamlessly extract the morphometry for coronary arteries is of significant value for understanding the structure-function relation. Here, the morphometry of large (> or = 1 mm in diameter) coronary arteries was extracted from computed tomography (CT) images using a recently validated segmentation algorithm. The coronary arteries of seven pigs were filled with Microfil, and the cast hearts were imaged with CT. The centerlines of the extracted vessels, the vessel radii, and the vessel lengths were identified for over 700 vessel segments. The extraction algorithm was based on a topological analysis of a vector field generated by normal vectors of the extracted vessel wall. The diameters, lengths, and angles of the right coronary artery, left anterior descending coronary artery, and left circumflex artery of all vessels > or = 1 mm in diameter were tabulated for the respective orders. It was found that bifurcations at orders 9-11 are planar ( approximately 90%). The relations between volume and length and area and length were also examined and found to scale as power laws. Furthermore, the bifurcation angles follow the minimum energy hypothesis but with significant scatter. Some of the applications of the semiautomated extraction of morphometric data in applications to coronary physiology and pathophysiology are highlighted.
IEEE Transactions on Visualization and Computer Graphics | 2011
Christopher Koehler; Thomas Wischgoll; Haibo Dong; Zachary Gaston
We present the visual analysis of a biologically inspired CFD simulation of the deformable flapping wings of a dragonfly as it takes off and begins to maneuver, using vortex detection and integration-based flow lines. The additional seed placement and perceptual challenges introduced by having multiple dynamically deforming objects in the highly unsteady 3D flow domain are addressed. A brief overview of the high speed photogrammetry setup used to capture the dragonfly takeoff, parametric surfaces used for wing reconstruction, CFD solver and underlying flapping flight theory is presented to clarify the importance of several unsteady flight mechanisms, such as the leading edge vortex, that are captured visually. A novel interactive seed placement method is used to simplify the generation of seed curves that stay in the vicinity of relevant flow phenomena as they move with the flapping wings. This method allows a user to define and evaluate the quality of a seeds trajectory over time while working with a single time step. The seed curves are then used to place particles, streamlines and generalized streak lines. The novel concept of flowing seeds is also introduced in order to add visual context about the instantaneous vector fields surrounding smoothly animate streak lines. Tests show this method to be particularly effective at visually capturing vortices that move quickly or that exist for a very brief period of time. In addition, an automatic camera animation method is used to address occlusion issues caused when animating the immersed wing boundaries alongside many geometric flow lines. Each visualization method is presented at multiple time steps during the up-stroke and down-stroke to highlight the formation, attachment and shedding of the leading edge vortices in pairs of wings. Also, the visualizations show evidence of wake capture at stroke reversal which suggests the existence of previously unknown unsteady lift generation mechanisms that are unique to quad wing insects.
VISSYM '02 Proceedings of the symposium on Data Visualisation 2002 | 2002
Thomas Wischgoll; Gerik Scheuermann
The analysis and visualization of flows is a central problem in visualization. Topology based methods have gained increasing interest in recent years. This article describes a method for the detection of closed streamlines in 3D flows. It is based on a special treatment of cases where a streamline reenters a cell to prevent infinite cycling during streamline calculation. The algorithm checks for possible exits of a loop of crossed faces and detects structurally stable closed streamlines. These global features are not detected by conventional topology and feature detection algorithms.
Radiology | 2013
Yunlong Huo; Thomas Wischgoll; Jenny Susana Choy; Srikanth Sola; Jose L. Navia; Shawn D. Teague; Deepak L. Bhatt; Ghassan S. Kassab
PURPOSE To provide proof of concept for a diagnostic method to assess diffuse coronary artery disease (CAD) on the basis of coronary computed tomography (CT) angiography. MATERIALS AND METHODS The study was approved by the Cleveland Clinic Institutional Review Board, and all subjects gave informed consent. Morphometric data from the epicardial coronary artery tree, determined with CT angiography in 120 subjects (89 patients with metabolic syndrome and 31 age- and sex-matched control subjects) were analyzed on the basis of the scaling power law. Results obtained in patients with metabolic syndrome and control subjects were compared statistically. RESULTS The mean lumen cross-sectional area (ie, lumen cross-sectional area averaged over each vessel of an epicardial coronary artery tree) and sum of intravascular volume in patients with metabolic syndrome (0.039 cm(2) ± 0.015 [standard deviation] and 2.71 cm(3) ± 1.75, respectively) were significantly less than those in control subjects (0.054 cm(2)± 0.015 and 3.29 cm(3)± 1.77, respectively; P < .05). The length-volume power law showed coefficients of 27.0 cm(-4/3) ± 9.0 (R(2) = 0.91 ± 0.08) for patients with metabolic syndrome and 19.9 cm(-4/3) ± 4.3 (R(2) = 0.92 ± 0.07) for control subjects (P < .05). The probability frequency shows that more than 65% of patients with metabolic syndrome had a coefficient of 23 or more for the length-volume scaling power law, whereas approximately 90% of the control subjects had a coefficient of less than 23. CONCLUSION The retrospective scaling analysis provides a quantitative rationale for diagnosis of diffuse CAD.
arXiv: Graphics | 2014
Anna Vilanova; Bernhard Preim; Roy van Pelt; Rocco Gasteiger; Mathias Neugebauer; Thomas Wischgoll
Morphology of cardiovascular tissue is influenced by the unsteady behavior of the blood flow and vice versa. Therefore, the pathogenesis of several cardiovascular diseases is directly affected by the blood-flow dynamics. Understanding flow behavior is of vital importance to understand the cardiovascular system and potentially harbors a considerable value for both diagnosis and risk assessment. The analysis of hemodynamic characteristics involves qualitative and quantitative inspection of the blood-flow field. Visualization plays an important role in the qualitative exploration, as well as the definition of relevant quantitative measures and its validation. There are two main approaches to obtain information about the blood flow: simulation by computational fluid dynamics, and in-vivo measurements. Although research on blood flow simulation has been performed for decades, many open problems remain concerning accuracy and patient-specific solutions. Possibilities for real measurement of blood flow have recently increased considerably by new developments in magnetic resonance imaging which enable the acquisition of 3D quantitative measurements of blood-flow velocity fields. This chapter presents the visualization challenges for both simulation and real measurements of unsteady blood-flow fields.
PLOS ONE | 2014
Tong Luo; Thomas Wischgoll; Bon Kwon Koo; Yunlong Huo; Ghassan S. Kassab
Aims Accurate computed tomography (CT)-based reconstruction of coronary morphometry (diameters, length, bifurcation angles) is important for construction of patient-specific models to aid diagnosis and therapy. The objective of this study is to validate the accuracy of patient coronary artery lumen area obtained from CT images based on intravascular ultrasound (IVUS). Methods and Results Morphometric data of 5 patient CT scans with 11 arteries from IVUS were reconstructed including the lumen cross sectional area (CSA), diameter and length. The volumetric data from CT images were analyzed at sub-pixel accuracy to obtain accurate vessel center lines and CSA. A new center line extraction approach was used where an initial estimated skeleton in discrete value was obtained using a traditional thinning algorithm. The CSA was determined directly without any circular shape assumptions to provide accurate reconstruction of stenosis. The root-mean-square error (RMSE) for CSA and diameter were 16.2% and 9.5% respectively. Conclusions The image segmentation and CSA extraction algorithm for reconstruction of coronary arteries proved to be accurate for determination of vessel lumen area. This approach provides fundamental morphometric data for patient-specific models to diagnose and treat coronary artery disease.
IEEE Computer Graphics and Applications | 2010
Christopher Koehler; Thomas Wischgoll
Computer-aided disease detection software effectively helps medical professionals use PA (posterior-anterior) and lateral (side) x-ray images to detect diseases such as lung cancer at early stages, which can be quite difficult. Typically, such software focuses only on PA x-ray images and uses image-processing and soft-computation techniques to identify potentially diseased areas. Theres been little focus on extracting knowledge from the x-rays and using knowledge of human anatomy to generate 3D reconstructions. Such reconstructions could help the detection process by providing a different way of visualizing the x-ray data to better investigate hard-to-diagnose regions.