Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Thomas Wurdinger is active.

Publication


Featured researches published by Thomas Wurdinger.


Nature Cell Biology | 2008

Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers

Johan Skog; Thomas Wurdinger; van Rijn S; Dimphna H. Meijer; Gainche L; Miguel Sena-Esteves; William T. Curry; Bob S. Carter; Anna M. Krichevsky; Xandra O. Breakefield

Glioblastoma tumour cells release microvesicles (exosomes) containing mRNA, miRNA and angiogenic proteins. These microvesicles are taken up by normal host cells, such as brain microvascular endothelial cells. By incorporating an mRNA for a reporter protein into these microvesicles, we demonstrate that messages delivered by microvesicles are translated by recipient cells. These microvesicles are also enriched in angiogenic proteins and stimulate tubule formation by endothelial cells. Tumour-derived microvesicles therefore serve as a means of delivering genetic information and proteins to recipient cells in the tumour environment. Glioblastoma microvesicles also stimulated proliferation of a human glioma cell line, indicating a self-promoting aspect. Messenger RNA mutant/variants and miRNAs characteristic of gliomas could be detected in serum microvesicles of glioblastoma patients. The tumour-specific EGFRvIII was detected in serum microvesicles from 7 out of 25 glioblastoma patients. Thus, tumour-derived microvesicles may provide diagnostic information and aid in therapeutic decisions for cancer patients through a blood test.


Journal of Experimental Medicine | 2007

The healing myocardium sequentially mobilizes two monocyte subsets with divergent and complementary functions

Matthias Nahrendorf; Filip K. Swirski; Elena Aikawa; Lars Stangenberg; Thomas Wurdinger; Jose-Luiz Figueiredo; Peter Libby; Ralph Weissleder; Mikael J. Pittet

Healing of myocardial infarction (MI) requires monocytes/macrophages. These mononuclear phagocytes likely degrade released macromolecules and aid in scavenging of dead cardiomyocytes, while mediating aspects of granulation tissue formation and remodeling. The mechanisms that orchestrate such divergent functions remain unknown. In view of the heightened appreciation of the heterogeneity of circulating monocytes, we investigated whether distinct monocyte subsets contribute in specific ways to myocardial ischemic injury in mouse MI. We identify two distinct phases of monocyte participation after MI and propose a model that reconciles the divergent properties of these cells in healing. Infarcted hearts modulate their chemokine expression profile over time, and they sequentially and actively recruit Ly-6Chi and -6Clo monocytes via CCR2 and CX3CR1, respectively. Ly-6Chi monocytes dominate early (phase I) and exhibit phagocytic, proteolytic, and inflammatory functions. Ly-6Clo monocytes dominate later (phase II), have attenuated inflammatory properties, and express vascular–endothelial growth factor. Consequently, Ly-6Chi monocytes digest damaged tissue, whereas Ly-6Clo monocytes promote healing via myofibroblast accumulation, angiogenesis, and deposition of collagen. MI in atherosclerotic mice with chronic Ly-6Chi monocytosis results in impaired healing, underscoring the need for a balanced and coordinated response. These observations provide novel mechanistic insights into the cellular and molecular events that regulate the response to ischemic injury and identify new therapeutic targets that can influence healing and ventricular remodeling after MI.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Functional delivery of viral miRNAs via exosomes

D. Michiel Pegtel; Katherine Cosmopoulos; David A. Thorley-Lawson; Monique van Eijndhoven; Erik S. Hopmans; Jelle L. Lindenberg; Tanja D. de Gruijl; Thomas Wurdinger; Jaap M. Middeldorp

Noncoding regulatory microRNAs (miRNAs) of cellular and viral origin control gene expression by repressing the translation of mRNAs into protein. Interestingly, miRNAs are secreted actively through small vesicles called “exosomes” that protect them from degradation by RNases, suggesting that these miRNAs may function outside the cell in which they were produced. Here we demonstrate that miRNAs secreted by EBV-infected cells are transferred to and act in uninfected recipient cells. Using a quantitative RT-PCR approach, we demonstrate that mature EBV-encoded miRNAs are secreted by EBV-infected B cells through exosomes. These EBV-miRNAs are functional because internalization of exosomes by MoDC results in a dose-dependent, miRNA-mediated repression of confirmed EBV target genes, including CXCL11/ITAC, an immunoregulatory gene down-regulated in primary EBV-associated lymphomas. We demonstrate that throughout coculture of EBV-infected B cells EBV-miRNAs accumulate in noninfected neighboring MoDC and show that this accumulation is mediated by transfer of exosomes. Thus, the exogenous EBV-miRNAs transferred through exosomes are delivered to subcellular sites of gene repression in recipient cells. Finally, we show in peripheral blood mononuclear cells from patients with increased EBV load that, although EBV DNA is restricted to the circulating B-cell population, EBV BART miRNAs are present in both B-cell and non-B-cell fractions, suggestive of miRNA transfer. Taken together our findings are consistent with miRNA-mediated gene silencing as a potential mechanism of intercellular communication between cells of the immune system that may be exploited by the persistent human γ-herpesvirus EBV.


Molecular and Cellular Biology | 2008

MicroRNA 21 promotes glioma invasion by targeting matrix metalloproteinase regulators.

Galina Gabriely; Thomas Wurdinger; Santosh Kesari; Christine Esau; Julja Burchard; Peter S. Linsley; Anna M. Krichevsky

ABSTRACT Substantial data indicate that microRNA 21 (miR-21) is significantly elevated in glioblastoma (GBM) and in many other tumors of various origins. This microRNA has been implicated in various aspects of carcinogenesis, including cellular proliferation, apoptosis, and migration. We demonstrate that miR-21 regulates multiple genes associated with glioma cell apoptosis, migration, and invasiveness, including the RECK and TIMP3 genes, which are suppressors of malignancy and inhibitors of matrix metalloproteinases (MMPs). Specific inhibition of miR-21 with antisense oligonucleotides leads to elevated levels of RECK and TIMP3 and therefore reduces MMP activities in vitro and in a human model of gliomas in nude mice. Moreover, downregulation of miR-21 in glioma cells leads to decreases of their migratory and invasion abilities. Our data suggest that miR-21 contributes to glioma malignancy by downregulation of MMP inhibitors, which leads to activation of MMPs, thus promoting invasiveness of cancer cells. Our results also indicate that inhibition of a single oncomir, like miR-21, with specific antisense molecules can provide a novel therapeutic approach for “physiological” modulation of multiple proteins whose expression is deregulated in cancer.


Cancer Cell | 2008

miR-296 regulates growth factor receptor overexpression in angiogenic endothelial cells

Thomas Wurdinger; Bakhos A. Tannous; Okay Saydam; Johan Skog; Stephan Grau; Jürgen Soutschek; Ralph Weissleder; Xandra O. Breakefield; Anna M. Krichevsky

A key step in angiogenesis is the upregulation of growth factor receptors on endothelial cells. Here, we demonstrate that a small regulatory microRNA, miR-296, has a major role in this process. Glioma cells and angiogenic growth factors elevate the level of miR-296 in primary human brain microvascular endothelial cells in culture. The miR-296 level is also elevated in primary tumor endothelial cells isolated from human brain tumors compared to normal brain endothelial cells. Growth factor-induced miR-296 contributes significantly to angiogenesis by directly targeting the hepatocyte growth factor-regulated tyrosine kinase substrate (HGS) mRNA, leading to decreased levels of HGS and thereby reducing HGS-mediated degradation of the growth factor receptors VEGFR2 and PDGFRbeta. Furthermore, inhibition of miR-296 with antagomirs reduces angiogenesis in tumor xenografts in vivo.


Lab on a Chip | 2010

Microfluidic isolation and transcriptome analysis of serum microvesicles

Chihchen Chen; Johan Skog; Chia-Hsien Hsu; Ryan T. Lessard; Leonora Balaj; Thomas Wurdinger; Bob S. Carter; Xandra O. Breakefield; Mehmet Toner; Daniel Irimia

Microvesicles (exosomes) shed from both normal and cancerous cells may serve as means of intercellular communication. These microvesicles carry proteins, lipids and nucleic acids derived from the host cell. Their isolation and analysis from blood samples have the potential to provide information about state and progression of malignancy and should prove of great clinical importance as biomarkers for a variety of disease states. However, current protocols for isolation of microvesicles from blood require high-speed centrifugation and filtration, which are cumbersome and time consuming. In order to take full advantage of the potential of microvesicles as biomarkers for clinical applications, faster and simpler methods of isolation will be needed. In this paper, we present an easy and rapid microfluidic immunoaffinity method to isolate microvesicles from small volumes of both serum from blood samples and conditioned medium from cells in culture. RNA of high quality can be extracted from these microvesicles providing a source of information about the genetic status of tumors to serve as biomarkers for diagnosis and prognosis of cancer.


Cell | 2015

In Vivo Imaging Reveals Extracellular Vesicle-Mediated Phenocopying of Metastatic Behavior

Anoek Zomer; Carrie Maynard; Frederik Verweij; Alwin Kamermans; Ronny Schäfer; Evelyne Beerling; Raymond M. Schiffelers; Elzo de Wit; Jordi Berenguer; Saskia I. J. Ellenbroek; Thomas Wurdinger; Dirk Michiel Pegtel; Jacco van Rheenen

Summary Most cancer cells release heterogeneous populations of extracellular vesicles (EVs) containing proteins, lipids, and nucleic acids. In vitro experiments showed that EV uptake can lead to transfer of functional mRNA and altered cellular behavior. However, similar in vivo experiments remain challenging because cells that take up EVs cannot be discriminated from non-EV-receiving cells. Here, we used the Cre-LoxP system to directly identify tumor cells that take up EVs in vivo. We show that EVs released by malignant tumor cells are taken up by less malignant tumor cells located within the same and within distant tumors and that these EVs carry mRNAs involved in migration and metastasis. By intravital imaging, we show that the less malignant tumor cells that take up EVs display enhanced migratory behavior and metastatic capacity. We postulate that tumor cells locally and systemically share molecules carried by EVs in vivo and that this affects cellular behavior.


Nature Methods | 2008

A secreted luciferase for ex-vivo monitoring of in vivo processes

Thomas Wurdinger; Christian E. Badr; Lisa Pike; Ruben de Kleine; Ralph Weissleder; Xandra O. Breakefield; Bakhos A. Tannous

Luciferases are widely used to monitor biological processes. Here we describe the naturally secreted Gaussia princeps luciferase (Gluc) as a highly sensitive reporter for quantitative assessment of cells in vivo by measuring its concentration in blood. The Gluc blood assay complements in vivo bioluminescence imaging, which has the ability to localize the signal and provides a multifaceted assessment of cell viability, proliferation and location in experimental disease and therapy models.


Cancer Research | 2011

Human Glioma Growth Is Controlled by MicroRNA-10b

Galina Gabriely; Ming Yi; Ravi S. Narayan; Johanna M. Niers; Thomas Wurdinger; Jaime Imitola; Keith L. Ligon; Santosh Kesari; Christine Esau; Robert M. Stephens; Bakhos A. Tannous; Anna M. Krichevsky

MicroRNA (miRNA) expression profiling studies revealed a number of miRNAs dysregulated in the malignant brain tumor glioblastoma. Molecular functions of these miRNAs in gliomagenesis are mainly unknown. We show that inhibition of miR-10b, a miRNA not expressed in human brain and strongly upregulated in both low-grade and high-grade gliomas, reduces glioma cell growth by cell-cycle arrest and apoptosis. These cellular responses are mediated by augmented expression of the direct targets of miR-10b, including BCL2L11/Bim, TFAP2C/AP-2γ, CDKN1A/p21, and CDKN2A/p16, which normally protect cells from uncontrolled growth. Analysis of The Cancer Genome Atlas expression data set reveals a strong positive correlation between numerous genes sustaining cellular growth and miR-10b levels in human glioblastomas, while proapoptotic genes anticorrelate with the expression of miR-10b. Furthermore, survival of glioblastoma patients expressing high levels of miR-10 family members is significantly reduced in comparison to patients with low miR-10 levels, indicating that miR-10 may contribute to glioma growth in vivo. Finally, inhibition of miR-10b in a mouse model of human glioma results in significant reduction of tumor growth. Altogether, our experiments validate an important role of miR-10b in gliomagenesis, reveal a novel mechanism of miR-10b-mediated regulation, and suggest the possibility of its future use as a therapeutic target in gliomas.


Molecular and Cellular Biology | 2009

Downregulated MicroRNA-200a in Meningiomas Promotes Tumor Growth by Reducing E-Cadherin and Activating the Wnt/beta-Catenin Signaling Pathway

Okay Saydam; Yiping Shen; Thomas Wurdinger; Ozlem Senol; Elvan Boke; Marianne James; Bakhos A. Tannous; Anat Stemmer-Rachamimov; Ming Yi; Robert M. Stephens; Cornel Fraefel; James F. Gusella; Anna M. Krichevsky; Xandra O. Breakefield

ABSTRACT Meningiomas, one of the most common human brain tumors, are derived from arachnoidal cells associated with brain meninges, are usually benign, and are frequently associated with neurofibromatosis type 2. Here, we define a typical human meningioma microRNA (miRNA) profile and characterize the effects of one downregulated miRNA, miR-200a, on tumor growth. Elevated levels of miR-200a inhibited meningioma cell growth in culture and in a tumor model in vivo. Upregulation of miR-200a decreased the expression of transcription factors ZEB1 and SIP1, with consequent increased expression of E-cadherin, an adhesion protein associated with cell differentiation. Downregulation of miR-200a in meningiomas and arachnoidal cells resulted in increased expression of β-catenin and cyclin D1 involved in cell proliferation. miR-200a was found to directly target β-catenin mRNA, thereby inhibiting its translation and blocking Wnt/β-catenin signaling, which is frequently involved in cancer. A direct correlation was found between the downregulation of miR-200a and the upregulation of β-catenin in human meningioma samples. Thus, miR-200a appears to act as a multifunctional tumor suppressor miRNA in meningiomas through effects on the E-cadherin and Wnt/β-catenin signaling pathways. This reveals a previously unrecognized signaling cascade involved in meningioma tumor development and highlights a novel molecular interaction between miR-200a and Wnt signaling, thereby providing insights into novel therapies for meningiomas.

Collaboration


Dive into the Thomas Wurdinger's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

David P. Noske

VU University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Pieter Wesseling

Radboud University Nijmegen

View shared research outputs
Top Co-Authors

Avatar

W. Peter Vandertop

VU University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Tonny Lagerweij

VU University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Esther Hulleman

VU University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Nik Sol

VU University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Myron G. Best

VU University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge