Thor Eysteinsson
University of Iceland
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Thor Eysteinsson.
Investigative Ophthalmology & Visual Science | 2009
Sveinn Hakon Hardarson; Samy Basit; Thora Elisabet Jonsdottir; Thor Eysteinsson; Gisli Hreinn Halldorsson; Robert Arnar Karlsson; James M. Beach; Jon Atli Benediktsson; Einar Stefánsson
PURPOSE Animal studies have indicated that retinal oxygen consumption is greater in dark than light. In this study, oxygen saturation is measured in retinal vessels of healthy humans during dark and light. METHODS The oximeter consists of a fundus camera, a beam splitter, a digital camera and software, which calculates hemoglobin oxygen saturation in the retinal vessels. In the first experiment, 18 healthy individuals underwent oximetry measurements after 30 minutes in the dark, followed by alternating 5-minute periods of white light (80 cd/m(2)) and dark. In the second experiment, 23 volunteers underwent oximetry measurements after 30 minutes in the dark, followed by light at 1, 10, and 100 cd/m(2). Three subjects were excluded from analysis in the first experiment and four in the second experiment because of poor image quality. RESULTS In the first experiment, the arteriolar saturation decreased from 92% +/- 4% (n = 15; mean +/- SD) after 30 minutes in the dark to 89% +/- 5% after 5 minutes in the light (P = 0.008). Corresponding numbers for venules are 60% +/- 5% in the dark and 55% +/- 10% (P = 0.020) in the light. In the second experiment, the arteriolar saturation was 92% +/- 4% in the dark and 88% +/- 7% in 100 cd/m(2) light (n = 19, P = 0.012). The corresponding values for venules were 59% +/- 9% in the dark and 55% +/- 10% in 100 cd/m(2) light (P = 0.065). CONCLUSIONS Oxygen saturation in retinal blood vessels is higher in dark than in 80 or 100 cd/m(2) light in human retinal arterioles and venules. The authors propose that this is a consequence of increased oxygen demand in the outer retina in the dark.
Progress in Retinal and Eye Research | 2005
Einar Stefánsson; D.B. Pedersen; Peter Koch Jensen; Morten la Cour; Jens Folke Kiilgaard; Kurt Bang; Thor Eysteinsson
The oxygen tension of the optic nerve is regulated by the intraocular pressure and systemic blood pressure, the resistance in the blood vessels and oxygen consumption of the tissue. The oxygen tension is autoregulated and moderate changes in intraocular pressure or blood pressure do not affect the optic nerve oxygen tension. If the intraocular pressure is increased above 40 mmHg or the ocular perfusion pressure decreased below 50 mmHg the autoregulation is overwhelmed and the optic nerve becomes hypoxic. A disturbance in oxidative metabolism in the cytochromes of the optic nerve can be seen at similar levels of perfusion pressure. The levels of perfusion pressure that lead to optic nerve hypoxia in the laboratory correspond remarkably well to the levels that increase the risk of glaucomatous optic nerve atrophy in human glaucoma patients. The risk for progressive optic nerve atrophy in human glaucoma patients is six times higher at a perfusion pressure of 30 mmHg, which corresponds to a level where the optic nerve is hypoxic in experimental animals, as compared to perfusion pressure levels above 50 mmHg where the optic nerve is normoxic. Medical intervention can affect optic nerve oxygen tension. Lowering the intraocular pressure tends to increase the optic nerve oxygen tension, even though this effect may be masked by the autoregulation when the optic nerve oxygen tension and perfusion pressure is in the normal range. Carbonic anhydrase inhibitors increase the optic nerve oxygen tension through a mechanism of vasodilatation and lowering of the intraocular pressure. Carbonic anhydrase inhibition reduces the removal of CO2 from the tissue and the CO2 accumulation induces vasodilatation resulting in increased blood flow and improved oxygen supply. This effect is inhibited by the cyclo-oxygenase inhibitor, indomethacin, which indicates that prostaglandin metabolism plays a role. Laboratory studies suggest that carbonic anhydrase inhibitors might be useful for medical treatment of optic nerve and retinal ischemia, potentially in diseases such as glaucoma and diabetic retinopathy. However, clinical trials and needed to test this hypotheses.
Investigative Ophthalmology & Visual Science | 2009
Sveinn Hakon Hardarson; Maria Soffia Gottfredsdottir; Gisli Hreinn Halldorsson; Robert Arnar Karlsson; Jon Atli Benediktsson; Thor Eysteinsson; James M. Beach; Alon Harris; Einar Stefánsson
PURPOSE Glaucoma may involve disturbances in retinal oxygenation and blood flow. The purpose of this study was to measure the effect of glaucoma filtration surgery on retinal vessel oxygen saturation. METHODS A noninvasive spectrophotometric retinal oximeter was used to measure hemoglobin oxygen saturation in retinal arterioles and venules before and after glaucoma filtration surgery. Twenty-five consecutive patients were recruited, and 19 had adequate image quality. Fourteen underwent trabeculectomy and five glaucoma tube surgery. Twelve had primary open-angle glaucoma and seven had exfoliative glaucoma. IOP decreased from 23 +/- 7 to 10 +/- 4 mm Hg (mean +/- SD, P = 0.0001). RESULTS Oxygen saturation increased in retinal arterioles from 97% +/- 4% to 99% +/- 6% (n = 19; P = 0.046) after surgery and was unchanged in venules (63% +/- 5% before surgery and 64% +/- 6% after, P = 0.76). There were no significant changes in saturation in the fellow eyes (P > 0.60). The arteriovenous difference was 34% before and 36% after surgery (P = 0.35). CONCLUSIONS Glaucoma filtration surgery had almost no effect on retinal vessel oxygen saturation.
British Journal of Ophthalmology | 2000
M. la Cour; J.F. Kiilgaard; Thor Eysteinsson; Anne Katrine Wiencke; Kurt Bang; Jens Dollerup; Peter Koch Jensen; Einar Stefánsson
AIM To investigate the influence of acute changes in intraocular pressure on the oxygen tension in the vicinity of the optic nerve head under control conditions and after intravenous administration of 500 mg of the carbonic anhydrase inhibitor dorzolamide. METHODS Domestic pigs were used as experimental animals. Oxygen tension was measured by means of a polarographic electrode in the vitreous 0.5 mm anterior to the optic disc. This entity is called the optic nerve oxygen tension. Intraocular pressure was controlled by a hypodermic needle inserted into the anterior chamber and connected to a saline reservoir. RESULTS When the intraocular pressure was clamped at 20 cm H2O optic nerve oxygen tension was 20 (5) mm Hg (n=8). Intravenous administration of dorzolamide caused an increase in optic nerve oxygen tension of 43 (8)% (n=6). Both before and after administration of dorzolamide optic nerve oxygen tension was unaffected by changes in intraocular pressure, as long as this pressure remained below 60 cm H2O. At intraocular pressures of 60 cm H2O and below, dorzolamide significantly increased optic nerve oxygen tension. CONCLUSION Intravenous administration of 500 mg dorzolamide increases the oxygen tension at the optic nerve head during acute increases in intraocular pressure.
British Journal of Ophthalmology | 2009
Sindri Traustason; Sveinn Hakon Hardarson; Maria Soffia Gottfredsdottir; Thor Eysteinsson; Robert Arnar Karlsson; Einar Stefánsson; Alon Harris
Aims: To examine whether the addition of dorzolamide to timolol monotherapy influences oxygen saturation in the human retina. Methods: Non-invasive spectrophotometric retinal oximetry was used to measure oxygen saturation in retinal vessels. Twenty patients with open-angle glaucoma (11) and ocular hypertension (9) were recruited. The patients were randomised into receiving timolol monotherapy or dorzolamide–timolol combination for an 8-month test period, followed by a second test period, before which the patients switched treatments. Oximetry measurements were performed at 2-month intervals during each period. Of the 20 patients, 13 followed the study protocol into the second test period, and 10 managed all study visits. Results: The oxygen saturation in retinal vessels was stable within the test periods. The mean arteriolar saturation was 96 (2)% (mean (SD)) during timolol monotherapy and 97 (2)% during dorzolamide–timolol combination therapy (p = 0.17, all patients pooled, n = 13). Corresponding values in venules were 66 (5)% during timolol monotherapy and 65 (6)% during dorzolamide–timolol therapy (p = 0.13). Patients who started on dorzolamide–timolol combination showed a significant reduction in arteriolar (98 (2)% to 95 (2)%, p<0.01) and venular saturation (69 (5)% to 66 (6)%, p<0.05) when changing to timolol monotherapy. Conclusion: Adding dorzolamide to timolol monotherapy has a minimal effect, but going from dorzolamide–timolol combination to timolol alone lowered arteriolar and venular oxygen saturation. The retinal oxygen saturation measurements show a high degree of stability over an extended period of time. Previous studies have suggested increased retinal and optic nerve blood flow with dorzolamide. Unchanged oxygen saturation and increased blood flow would indicate increased oxygen delivery to the retina.
Acta Ophthalmologica | 2014
Thor Eysteinsson; Sveinn Hakon Hardarson; David Bragason; Einar Stefánsson
To assess retinal vessel oxygen saturation and retinal vessel diameter in retinitis pigmentosa.
Visual Neuroscience | 2003
Anna Möller; Thor Eysteinsson
The separate components of the dark-adapted electroretinogram (ERG) are believed to reflect the electric activity of neurones in both the inner and the outer layers of the retina, although their precise origin still remains unclear. The purpose of this study was to examine whether selective blockage or stimulation of the different subtypes of GABA receptors might help further elucidate the cellular origin of the components of the dark-adapted ERG. The rat retina is of interest since the localization and physiology of GABA receptors in that retina have been examined in great detail. GABA agonists and antagonists, known to affect the responses of neurons in the inner plexiform layer, were injected into the vitreous of one eye while ERG responses evoked by flashes of white light were recorded. GABA and the GABAa agonist isoguvacine completely removed the oscillatory potentials (OPs) and reduced the amplitude of the a- and b-waves. TPMPA, a GABAC antagonist, reduced the a- and b-waves but had no significant effect on the OPs. Baclofen, a GABAb agonist, reduced the amplitude of the a- and b-waves, without having any effects on the amplitude of the OPs. The GABAb antagonist CGP35348 increased the amplitudes of the a- and b-wave without having an effect on the amplitudes of the OPs. The GABAb receptor ligands had significant and opposite effect on the latency of the OPs. These results indicate that retinal neurons, presumably a subpopulation of amacrine cells, that have GABAb receptors are not the source of the OPs of the ERG, although they may modulate these wavelets in some manner, while contributing to the generation of the dark-adapted a- and b-waves. OPs are modified by stimulation of GABAa receptors, and the a- and b-waves by stimulation of all GABA receptor subtypes.
Visual Neuroscience | 1997
Arsaell Arnarsson; Thor Eysteinsson
We have recorded the electroretinogram (ERG) from the superfused eyecup of the Xenopus retina in order to assess the effects of the inhibitory neurotransmitter gamma-aminobutyric acid (GABA), and its agonists and antagonists, on individual ERG components. We found that GABA (0.5-10 mM) reduced the amplitudes of both the b- and d-waves of the Xenopus ERG. The GABA uptake blocker nipecotic acid (1 mM) had similar effects on b- and d-waves. GABA at 5 mM and 10 mM also caused an increase in the a-wave. The GABA antagonist picrotoxin (0.1-2 mM) and the GABA/a antagonist bicuculline (0.2 mM) both increased the amplitude of the b- and d-waves of the ERG. The GABA/b agonist baclofen (0.3 mM) reduced the amplitude of the ERG b-wave, enhanced the amplitude of the a-wave, and slightly reduced the amplitude and increased the peak time of the d-wave. The GABA/b antagonists phaclofen and saclofen had no reliable effects on the Xenopus ERG. Glutamate analogs known to affect specific types of retinal neurons were applied to modify the retinal circuitry and then the effects of GABA and its antagonists were examined under these modified conditions. 2-amino-4-phosphonobutyric acid (APB) increased the d-wave, and blocked the b-wave and the effect of GABA on the ERG, but not the antagonist-induced increase in the d-wave. KYN blocked the antagonist-induced increase in the b-wave, while GABA increases the amplitude of the b-wave if the d-wave has been removed by prior superfusion with kynurenic acid (KYN). N-methyl-DL-aspartate (NMDLA), which acts only in the proximal retina, reduced the amplitude of the ERG and blocked the effect of GABA and the antagonist-induced increase in ERG b- and d-waves amplitude. These results suggest that GABAergic mechanisms related to both A and B receptor types can influence the amplitude and light sensitivity of all the components of the Xenopus ERG. Since GABA is found in greatest abundance in the proximal retina, and B type of receptors are present almost exclusively there, the data suggests that most of the effects of GABA agonists and antagonists observed are dependent on proximal retinal mechanisms, and that there are separate mechanisms in the proximal retina related to the b- and the d-waves.
Investigative Ophthalmology & Visual Science | 2017
Einar Stefánsson; Olof Birna Olafsdottir; Anna Bryndis Einarsdottir; Thorunn Scheving Eliasdottir; Thor Eysteinsson; Wouter Vehmeijer; Evelien Vandewalle; Toke Bek; Sveinn Hakon Hardarson
Purpose Biomarkers for several eye and brain diseases are reviewed, where retinal oximetry may help confirm diagnosis or measure severity of disease. These include diabetic retinopathy, central retinal vein occlusion (CRVO), retinitis pigmentosa, glaucoma, and Alzheimers disease. Methods Retinal oximetry is based on spectrophotometric fundus imaging and measures oxygen saturation in retinal arterioles and venules in a noninvasive, quick, safe manner. Retinal oximetry detects changes in oxygen metabolism, including those that result from ischemia or atrophy. Results In diabetic retinopathy, venous oxygen saturation increases and arteriovenous difference decreases. Both correlate with diabetic retinopathy severity as conventionally classified on fundus photographs. In CRVO, vein occlusion causes hypoxia, which is measured directly by retinal oximetry to confirm the diagnosis and measure severity. In both diseases, the change in oxygen levels is a consequence of disturbed blood flow with resulting tissue hypoxia and vascular endothelial growth factor (VEGF) production. In atrophic diseases, such as retinitis pigmentosa and glaucoma, retinal oxygen consumption is reduced and this is detected by retinal oximetry. Retinal oximetry correlates with visual field damage and retinal atrophy. It is an objective metabolic measure of the degree of retinal atrophy. Finally, the retina is part of the central nervous system tissue and reflects central nervous system diseases. In Alzheimers disease, a change in retinal oxygen metabolism has been discovered. Conclusions Retinal oximetry is a novel, noninvasive technology that opens the field of metabolic imaging of the retina. Biomarkers in metabolic, ischemic, and atrophic diseases of the retina and central nervous system have been discovered.
British Journal of Ophthalmology | 2004
Jens Folke Kiilgaard; D.B. Pedersen; Thor Eysteinsson; M. la Cour; Kurt Bang; Peter Koch Jensen; Einar Stefánsson
Background/aims: The authors have previously reported that carbonic anhydrase inhibitors such as acetazolamide and dorzolamide raise optic nerve oxygen tension (ONPO2) in pigs. The purpose of the present study was to investigate whether timolol, which belongs to another group of glaucoma drugs called β blockers, has a similar effect. In addition, the effect of dorzolamide and timolol in combination was studied. Methods: Polarographic oxygen electrodes were placed transvitreally over the optic disc in anaesthetised pigs and ONPO2 was recorded continually. Drugs were administered intravenously either as 100 mg timolol followed by 500 mg dorzolamide (n = 5), 500 mg dorzolamide followed by 100 mg timolol (n = 5), or 100 mg timolol and 500 mg dorzolamide given simultaneously (n = 5). Arterial blood pressure, blood gasses, and heart rate were recorded. Results: ONPO2 was unaffected by administration of 100 mg timolol as an intravenous injection (n = 5). Administration of 500 mg dorzolamide by itself significantly increased ONPO2 from 2.96 (SD 0.62) kPa to 3.69 (SD 0.88) kPa (n = 4, p = 0.035). The dorzolamide induced ONPO2 increase was not significantly different from the ONPO2 increases were seen when dorzolamide was administered simultaneous with (n = 5) or 35 minutes (n = 5) after 100 mg timolol. Conclusion: Systemic administration of timolol does not affect the optic nerve oxygen tension despite its lowering effect on the intraocular pressure. Additionally, timolol does not affect the ONPO2 increasing effect of dorzolamide.