Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Thorbald van Hall is active.

Publication


Featured researches published by Thorbald van Hall.


Journal of Immunology | 2011

M2 Macrophages Induced by Prostaglandin E2 and IL-6 from Cervical Carcinoma Are Switched to Activated M1 Macrophages by CD4+ Th1 Cells

Moniek Heusinkveld; Peggy J. de Vos van Steenwijk; Renske Goedemans; Tamara H. Ramwadhdoebe; Arko Gorter; Marij J. P. Welters; Thorbald van Hall; Sjoerd H. van der Burg

Monocytes attracted by tumor-induced chronic inflammation differentiate to APCs, the type of which depends on cues in the local tumor milieu. In this work, we studied the influence of human cervical cancer cells on monocyte differentiation and showed that the majority of cancer cells either hampered monocyte to dendritic cell differentiation or skewed their differentiation toward M2-like macrophages. Blocking studies revealed that M2 differentiation was caused by tumor-produced PGE2 and IL-6. TGF-β, IL-10, VEGF, and macrophage colony-stimulating factor did not play a role. Notably, these CD14+CD163+ M2 macrophages were also detected in situ. Activation of cancer cell-induced M2-like macrophages by several TLR-agonists revealed that compared with dendritic cells, these M2 macrophages displayed a tolerogenic phenotype reflected by a lower expression of costimulatory molecules, an altered balance in IL-12p70 and IL-10 production, and a poor capacity to stimulate T cell proliferation and IFN-γ production. Notably, upon cognate interaction with Th1 cells, these tumor-induced M2 macrophages could be switched to activated M1-like macrophages that expressed high levels of costimulatory molecules, produced high amounts of IL-12 and low amounts of IL-10, and acquired the lymphoid homing marker CCR7. The effects of the interaction between M2 macrophages and Th1 cells could partially be mimicked by activation of these APCs via CD40 in the presence of IFN-γ. Our data on the presence, induction, and plasticity of tumor-induced tolerogenic APCs in cervical cancer suggest that tumor-infiltrated Th1 cells can stimulate a tumor-rejecting environment by switching M2 macrophages to classical proinflammatory M1 macrophages.


Nature Reviews Cancer | 2016

Vaccines for established cancer: overcoming the challenges posed by immune evasion

Sjoerd H. van der Burg; Ramon Arens; Ferry Ossendorp; Thorbald van Hall; Cornelis J. M. Melief

Therapeutic vaccines preferentially stimulate T cells against tumour-specific epitopes that are created by DNA mutations or oncogenic viruses. In the setting of premalignant disease, carcinoma in situ or minimal residual disease, therapeutic vaccination can be clinically successful as monotherapy; however, in established cancers, therapeutic vaccines will require co-treatments to overcome immune evasion and to become fully effective. In this Review, we discuss the progress that has been made in overcoming immune evasion controlled by tumour cell-intrinsic factors and the tumour microenvironment. We summarize how therapeutic benefit can be maximized in patients with established cancers by improving vaccine design and by using vaccines to increase the effects of standard chemotherapies, to establish and/or maintain tumour-specific T cells that are re-energized by checkpoint blockade and other therapies, and to sustain the antitumour response of adoptively transferred T cells.


Journal of Clinical Investigation | 2015

Therapeutic cancer vaccines

Cornelis J. M. Melief; Thorbald van Hall; Ramon Arens; Ferry Ossendorp; Sjoerd H. van der Burg

The clinical benefit of therapeutic cancer vaccines has been established. Whereas regression of lesions was shown for premalignant lesions caused by HPV, clinical benefit in cancer patients was mostly noted as prolonged survival. Suboptimal vaccine design and an immunosuppressive cancer microenvironment are the root causes of the lack of cancer eradication. Effective cancer vaccines deliver concentrated antigen to both HLA class I and II molecules of DCs, promoting both CD4 and CD8 T cell responses. Optimal vaccine platforms include DNA and RNA vaccines and synthetic long peptides. Antigens of choice include mutant sequences, selected cancer testis antigens, and viral antigens. Drugs or physical treatments can mitigate the immunosuppressive cancer microenvironment and include chemotherapeutics, radiation, indoleamine 2,3-dioxygenase (IDO) inhibitors, inhibitors of T cell checkpoints, agonists of selected TNF receptor family members, and inhibitors of undesirable cytokines. The specificity of therapeutic vaccination combined with such immunomodulation offers an attractive avenue for the development of future cancer therapies.


Cancer Research | 2007

DNAX accessory molecule-1 mediated recognition of freshly isolated ovarian carcinoma by resting natural killer cells.

Mattias Carlsten; Niklas K. Björkström; Håkan Norell; Yenan T. Bryceson; Thorbald van Hall; Bettina C. Baumann; Mikael Hanson; Kjell Schedvins; Rolf Kiessling; Hans-Gustaf Ljunggren; Karl-Johan Malmberg

Although natural killer (NK) cells are well known for their ability to kill tumors, few studies have addressed the interactions between resting (nonactivated) NK cells and freshly isolated human tumors. Here, we show that human leukocyte antigen class I(low) tumor cells isolated directly from patients with advanced ovarian carcinoma trigger degranulation by resting allogeneic NK cells. This was paralleled by induction of granzyme B and caspase-6 activities in the tumor cells and significant tumor cell lysis. Ovarian carcinoma cells displayed ubiquitous expression of the DNAX accessory molecule-1 (DNAM-1) ligand PVR and sparse/heterogeneous expression of the NKG2D ligands MICA/MICB and ULBP1, ULBP2, and ULBP3. In line with the NK receptor ligand expression profiles, antibody-mediated blockade of activating receptor pathways revealed a dominant role for DNAM-1 and a complementary contribution of NKG2D signaling in tumor cell recognition. These results show that resting NK cells are capable of directly recognizing freshly isolated human tumor cells and identify ovarian carcinoma as a potential target for adoptive NK cell-based immunotherapy.


Journal of Biological Chemistry | 2007

Distinct Uptake Mechanisms but Similar Intracellular Processing of Two Different Toll-like Receptor Ligand-Peptide Conjugates in Dendritic Cells *

Selina Khan; Martijn S. Bijker; Jimmy J. Weterings; Hans J. Tanke; Gosse J. Adema; Thorbald van Hall; Jan W. Drijfhout; Cornelis J. M. Melief; Hermen S. Overkleeft; Gijsbert A. van der Marel; Dmitri V. Filippov; Sjoerd H. van der Burg; Ferry Ossendorp

Covalent conjugation of Toll-like receptor ligands (TLR-L) to synthetic antigenic peptides strongly improves antigen presentation in vitro and T lymphocyte priming in vivo. These molecularly well defined TLR-L-peptide conjugates, constitute an attractive vaccination modality, sharing the peptide antigen and a defined adjuvant in one single molecule. We have analyzed the intracellular trafficking and processing of two TLR-L conjugates in dendritic cells (DCs). Long synthetic peptides containing an ovalbumin cytotoxic T-cell epitope were chemically conjugated to two different TLR-Ls the TLR2 ligand, Pam3CysSK4 (Pam) or the TLR9 ligand CpG. Rapid and enhanced uptake of both types of TLR-L-conjugated peptide occurred in DCs. Moreover, TLR-L conjugation greatly enhanced antigen presentation, a process that was dependent on endosomal acidification, proteasomal cleavage, and TAP translocation. The uptake of the CpG∼conjugate was independent of endosomally-expressed TLR9 as reported previously. Unexpectedly, we found that Pam∼conjugated peptides were likewise internalized independently of the expression of cell surface-expressed TLR2. Further characterization of the uptake mechanisms revealed that TLR2-L employed a different uptake route than TLR9-L. Inhibition of clathrin- or caveolin-dependent endocytosis greatly reduced uptake and antigen presentation of the Pam-conjugate. In contrast, internalization and antigen presentation of CpG∼conjugates was independent of clathrin-coated pits but partly dependent on caveolae formation. Importantly, in contrast to the TLR-independent uptake of the conjugates, TLR expression and downstream TLR signaling was required for dendritic cell maturation and for priming of naïve CD8+ T-cells. Together, our data show that targeting to two distinct TLRs requires distinct uptake mechanism but follows similar trafficking and intracellular processing pathways leading to optimal antigen presentation and T-cell priming.


Nature Medicine | 2006

Selective cytotoxic T-lymphocyte targeting of tumor immune escape variants

Thorbald van Hall; Elisabeth Z. Wolpert; Peter A. van Veelen; Sandra Laban; Michael van der Veer; Marjet Roseboom; Sandra A. Bres; Per Grufman; Arnoud H. de Ru; Hugo D. Meiring; Ad P. J. M. de Jong; Kees L. M. C. Franken; Antoinette Teixeira; Rob Valentijn; Jan W. Drijfhout; Frits Koning; Marcel Camps; Ferry Ossendorp; Klas Kärre; Hans-Gustaf Ljunggren; Cornelis J. M. Melief; Rienk Offringa

Defects in major histocompatibility complex (MHC) class I–restricted antigen presentation are frequently observed in human cancers and result in escape of tumors from cytotoxic T lymphocyte (CTL) immune surveillance in mice. Here, we show the existence of a unique category of CTLs that can prevent this escape. The CTLs target an alternative repertoire of peptide epitopes that emerge in MHC class I at the surface of cells with impaired function of transporter associated with antigen processing (TAP), tapasin or the proteasome. These peptides, although derived from self antigens such as the commonly expressed Lass5 protein (also known as Trh4), are not presented by normal cells. This explains why they act as immunogenic neoantigens. The newly discovered epitopes can be exploited for immune intervention against processing-deficient tumors through adoptive T-cell transfer or peptide vaccination.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Antigen storage compartments in mature dendritic cells facilitate prolonged cytotoxic T lymphocyte cross-priming capacity

Nadine van Montfoort; Marcel Camps; Selina Khan; Dmitri V. Filippov; Jimmy J. Weterings; Janice Griffith; Hans J. Geuze; Thorbald van Hall; J. Sjef Verbeek; Cornelis J. M. Melief; Ferry Ossendorp

Dendritic cells (DCs) are crucial for priming of naive CD8+ T lymphocytes to exogenous antigens, so-called “cross-priming.” We report that exogenous protein antigen can be conserved for several days in mature DCs, coinciding with strong cytotoxic T lymphocyte cross-priming potency in vivo. After MHC class I peptide elution, protein antigen-derived peptide presentation is efficiently restored, indicating the presence of an intracellular antigen depot. We characterized this depot as a lysosome-like organelle, distinct from MHC class II compartments and recently described early endosomal compartments that allow acute antigen presentation in MHC class I. The storage compartments we report here facilitate continuous supply of MHC class I ligands. This mechanism ensures sustained cross-presentation by DCs, despite the short-lived expression of MHC class I–peptide complexes at the cell surface.


Journal of Immunology | 2000

Abrogation of CTL epitope processing by single amino acid substitution flanking the C-terminal proteasome cleavage site.

Nico J. Beekman; Peter A. van Veelen; Thorbald van Hall; Anne Neisig; Alice J. A. M. Sijts; Marcel Camps; Peter-M. Kloetzel; Jacques Neefjes; Cornelis J. M. Melief; Ferry Ossendorp

CTL directed against the Moloney murine leukemia virus (MuLV) epitope SSWDFITV recognize Moloney MuLV-induced tumor cells, but do not recognize cells transformed by the closely related Friend MuLV. The potential Friend MuLV epitope has strong sequence homology with Moloney MuLV and only differs in one amino acid within the CTL epitope and one amino acid just outside the epitope. We now show that failure to recognize Friend MuLV-transformed tumor cells is based on a defect in proteasome-mediated processing of the Friend epitope which is due to a single amino acid substitution (N→D) immediately flanking the C-terminal anchor residue of the epitope. Proteasome-mediated digestion analysis of a synthetic 26-mer peptide derived from the Friend sequence shows that cleavage takes place predominantly C-terminal of D, instead of V as is the case for the Moloney MuLV sequence. Therefore, the C terminus of the epitope is not properly generated. Epitope-containing peptide fragments extended with an additional C-terminal D are not efficiently translocated by TAP and do not show significant binding affinity to MHC class I-Kb molecules. Thus, a potential CTL epitope present in the Friend virus sequence is not properly processed and presented because of a natural flanking aspartic acid that obliterates the correct C-terminal cleavage site. This constitutes a novel way to subvert proteasome-mediated generation of proper antigenic peptide fragments.


Nature Immunology | 2011

Antigen processing by nardilysin and thimet oligopeptidase generates cytotoxic T cell epitopes

Jan H. Kessler; Selina Khan; Ulrike Seifert; Sylvie Le Gall; K. Martin Chow; Annette Paschen; Sandra A. Bres-Vloemans; Arnoud H. de Ru; Nadine van Montfoort; Kees L. M. C. Franken; Willemien E. Benckhuijsen; Jill M. Brooks; Thorbald van Hall; Kallol Ray; Arend Mulder; Ilias I.N. Doxiadis; Paul F. van Swieten; Hermen S. Overkleeft; Annik Prat; Birgitta Tomkinson; Jacques Neefjes; Peter M. Kloetzel; David W. Rodgers; Louis B. Hersh; Jan W. Drijfhout; Peter A. van Veelen; Ferry Ossendorp; Cornelis J. M. Melief

Cytotoxic T lymphocytes (CTLs) recognize peptides presented by HLA class I molecules on the cell surface. The C terminus of these CTL epitopes is considered to be produced by the proteasome. Here we demonstrate that the cytosolic endopeptidases nardilysin and thimet oligopeptidase (TOP) complemented proteasome activity. Nardilysin and TOP were required, either together or alone, for the generation of a tumor-specific CTL epitope from PRAME, an immunodominant CTL epitope from Epstein-Barr virus protein EBNA3C, and a clinically important epitope from the melanoma protein MART-1. TOP functioned as C-terminal trimming peptidase in antigen processing, and nardilysin contributed to both the C-terminal and N-terminal generation of CTL epitopes. By broadening the antigenic peptide repertoire, nardilysin and TOP strengthen the immune defense against intracellular pathogens and cancer.


Current Opinion in Immunology | 2016

The urgent need to recover MHC class I in cancers for effective immunotherapy.

Federico Garrido; Natalia Aptsiauri; Elien M. Doorduijn; Angel M Garcia Lora; Thorbald van Hall

Highlights • Tumor immune escape compromises the efficacy of cancer immunotherapy.• Loss of MHC class I expression is a frequent event in cancer cells.• Three tumor phenotypes determine cancer fate: escape, rejection and dormancy.• Recovery of MHC class I expression is required to improve cancer immunotherapy.

Collaboration


Dive into the Thorbald van Hall's collaboration.

Top Co-Authors

Avatar

Sjoerd H. van der Burg

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Ferry Ossendorp

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Cornelis J. M. Melief

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Marjolein Sluijter

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Rienk Offringa

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Cláudia C. Oliveira

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Bianca Querido

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Elien M. Doorduijn

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Marcel Camps

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Peter A. van Veelen

Leiden University Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge