Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Thorsten Boroviak is active.

Publication


Featured researches published by Thorsten Boroviak.


Nature Cell Biology | 2014

The ability of inner-cell-mass cells to self-renew as embryonic stem cells is acquired following epiblast specification

Thorsten Boroviak; Remco Loos; Paul Bertone; Austin Smith; Jennifer Nichols

The precise relationship of embryonic stem cells (ESCs) to cells in the mouse embryo remains controversial. We present transcriptional and functional data to identify the embryonic counterpart of ESCs. Marker profiling shows that ESCs are distinct from early inner cell mass (ICM) and closely resemble pre-implantation epiblast. A characteristic feature of mouse ESCs is propagation without ERK signalling. Single-cell culture reveals that cell-autonomous capacity to thrive when the ERK pathway is inhibited arises late during blastocyst development and is lost after implantation. The frequency of deriving clonal ESC lines suggests that all E4.5 epiblast cells can become ESCs. We further show that ICM cells from early blastocysts can progress to ERK independence if provided with a specific laminin substrate. These findings suggest that formation of the epiblast coincides with competence for ERK-independent self-renewal in vitro and consequent propagation as ESC lines.


Developmental Cell | 2015

Lineage-Specific Profiling Delineates the Emergence and Progression of Naive Pluripotency in Mammalian Embryogenesis

Thorsten Boroviak; Remco Loos; Patrick Lombard; Junko Okahara; Rüdiger Behr; Erika Sasaki; Jennifer Nichols; Austin Smith; Paul Bertone

Summary Naive pluripotency is manifest in the preimplantation mammalian embryo. Here we determine transcriptome dynamics of mouse development from the eight-cell stage to postimplantation using lineage-specific RNA sequencing. This method combines high sensitivity and reporter-based fate assignment to acquire the full spectrum of gene expression from discrete embryonic cell types. We define expression modules indicative of developmental state and temporal regulatory patterns marking the establishment and dissolution of naive pluripotency in vivo. Analysis of embryonic stem cells and diapaused embryos reveals near-complete conservation of the core transcriptional circuitry operative in the preimplantation epiblast. Comparison to inner cell masses of marmoset primate blastocysts identifies a similar complement of pluripotency factors but use of alternative signaling pathways. Embryo culture experiments further indicate that marmoset embryos utilize WNT signaling during early lineage segregation, unlike rodents. These findings support a conserved transcription factor foundation for naive pluripotency while revealing species-specific regulatory features of lineage segregation.


Cell | 2016

Myc depletion induces a pluripotent dormant state mimicking diapause

Roberta Scognamiglio; Nina Cabezas-Wallscheid; Marc Thier; Sandro Altamura; Alejandro Reyes; Áine M. Prendergast; Daniel Baumgärtner; Larissa S. Carnevalli; Ann Atzberger; Simon Haas; Lisa von Paleske; Thorsten Boroviak; Philipp Wörsdörfer; Marieke Essers; Ulrich Kloz; Robert N. Eisenman; Frank Edenhofer; Paul Bertone; Wolfgang Huber; Franciscus van der Hoeven; Austin Smith; Andreas Trumpp

Summary Mouse embryonic stem cells (ESCs) are maintained in a naive ground state of pluripotency in the presence of MEK and GSK3 inhibitors. Here, we show that ground-state ESCs express low Myc levels. Deletion of both c-myc and N-myc (dKO) or pharmacological inhibition of Myc activity strongly decreases transcription, splicing, and protein synthesis, leading to proliferation arrest. This process is reversible and occurs without affecting pluripotency, suggesting that Myc-depleted stem cells enter a state of dormancy similar to embryonic diapause. Indeed, c-Myc is depleted in diapaused blastocysts, and the differential expression signatures of dKO ESCs and diapaused epiblasts are remarkably similar. Following Myc inhibition, pre-implantation blastocysts enter biosynthetic dormancy but can progress through their normal developmental program after transfer into pseudo-pregnant recipients. Our study shows that Myc controls the biosynthetic machinery of stem cells without affecting their potency, thus regulating their entry and exit from the dormant state.


Philosophical Transactions of the Royal Society B | 2014

The birth of embryonic pluripotency

Thorsten Boroviak; Jennifer Nichols

Formation of a eutherian mammal requires concurrent establishment of embryonic and extraembryonic lineages. The functions of the trophectoderm and primitive endoderm are to enable implantation in the maternal uterus, axis specification and delivery of nutrients. The pluripotent epiblast represents the founding cell population of the embryo proper, which is protected from ectopic and premature differentiation until it is required to respond to inductive cues to form the fetus. While positional information plays a major role in specifying the trophoblast lineage, segregation of primitive endoderm from epiblast depends upon gradual acquisition of transcriptional identity, directed but not initiated by fibroblast growth factor (FGF) signalling. Following early cleavage divisions and formation of the blastocyst, cells of the inner cell mass lose totipotency. Developing epiblast cells transiently attain the state of naive pluripotency and competence to self-renew in vitro as embryonic stem cells and in vivo by means of diapause. This property is lost after implantation as the epiblast epithelializes and becomes primed in preparation for gastrulation and subsequent organogenesis.


Development | 2017

Primate embryogenesis predicts the hallmarks of human naïve pluripotency

Thorsten Boroviak; Jennifer Nichols

ABSTRACT Naïve pluripotent mouse embryonic stem cells (ESCs) resemble the preimplantation epiblast and efficiently contribute to chimaeras. Primate ESCs correspond to the postimplantation embryo and fail to resume development in chimaeric assays. Recent data suggest that human ESCs can be ‘reset’ to an earlier developmental stage, but their functional capacity remains ill defined. Here, we discuss how the naïve state is inherently linked to preimplantation epiblast identity in the embryo. We hypothesise that distinctive features of primate development provide stringent criteria to evaluate naïve pluripotency in human and other primate cells. Based on our hypothesis, we define 12 key hallmarks of naïve pluripotency, five of which are specific to primates. These hallmarks may serve as a functional framework to assess human naïve ESCs. Summary: This Hypothesis article highlights several fundamental differences between rodent and primate early development and exploits these to predict key hallmarks of naïve pluripotency in primates.


DNA Research | 2013

Development and Characterization of cDNA Resources for the Common Marmoset: One of the Experimental Primate Models

Shoji Tatsumoto; Naoki Adati; Yasushi Tohtoki; Yoshiyuki Sakaki; Thorsten Boroviak; Sonoko Habu; Hideyuki Okano; Hiroshi Suemizu; Erika Sasaki; Masanobu Satake

The common marmoset is a new world monkey, which has become a valuable experimental animal for biomedical research. This study developed cDNA libraries for the common marmoset from five different tissues. A total of 290 426 high-quality EST sequences were obtained, where 251 587 sequences (86.5%) had homology (1E−100) with the Refseqs of six different primate species, including human and marmoset. In parallel, 270 673 sequences (93.2%) were aligned to the human genome. When 247 090 sequences were assembled into 17 232 contigs, most of the sequences (218 857 or 15 089 contigs) were located in exonic regions, indicating that these genes are expressed in human and marmoset. The other 5578 sequences (or 808 contigs) mapping to the human genome were not located in exonic regions, suggesting that they are not expressed in human. Furthermore, a different set of 118 potential coding sequences were not similar to any Refseqs in any species, and, thus, may represent unknown genes. The cDNA libraries developed in this study are available through RIKEN Bio Resource Center. A Web server for the marmoset cDNAs is available at http://marmoset.nig.ac.jp/index.html, where each marmoset EST sequence has been annotated by reference to the human genome. These new libraries will be a useful genetic resource to facilitate research in the common marmoset.


Development | 2018

Integrated analysis of single-cell embryo data yields a unified transcriptome signature for the human pre-implantation epiblast.

Giuliano Giuseppe Stirparo; Thorsten Boroviak; Ge Guo; Jennifer Nichols; Austin Smith; Paul Bertone

ABSTRACT Single-cell profiling techniques create opportunities to delineate cell fate progression in mammalian development. Recent studies have provided transcriptome data from human pre-implantation embryos, in total comprising nearly 2000 individual cells. Interpretation of these data is confounded by biological factors, such as variable embryo staging and cell-type ambiguity, as well as technical challenges in the collective analysis of datasets produced with different sample preparation and sequencing protocols. Here, we address these issues to assemble a complete gene expression time course spanning human pre-implantation embryogenesis. We identify key transcriptional features over developmental time and elucidate lineage-specific regulatory networks. We resolve post-hoc cell-type assignment in the blastocyst, and define robust transcriptional prototypes that capture epiblast and primitive endoderm lineages. Examination of human pluripotent stem cell transcriptomes in this framework identifies culture conditions that sustain a naïve state pertaining to the inner cell mass. Our approach thus clarifies understanding both of lineage segregation in the early human embryo and of in vitro stem cell identity, and provides an analytical resource for comparative molecular embryology. Highlighted Article: A comprehensive analysis of single-cell RNA-seq data from human pre-implantation embryos resolves cell-type ambiguities and defines consensus transcriptomes for emergent embryonic lineages.


bioRxiv | 2018

Single-cell transcriptome analysis of human, marmoset and mouse embryos reveals common and divergent features of preimplantation development

Thorsten Boroviak; Giuliano Giuseppe Stirparo; Sabine Dietmann; Irene Herraez; Hisham Mohammed; Wolf Reik; Austin Smith; Erika Sasaki; Jennifer Nichols; Paul Bertone

The mouse embryo is the canonical model for mammalian preimplantation development. Recent advances in single-cell profiling allow detailed analysis of embryogenesis in other eutherian species, including human, to distinguish conserved from divergent regulatory programs and signalling pathways in the rodent paradigm. Here, we identify and compare transcriptional features of human, marmoset and mouse embryos by single-cell RNA-seq. Zygotic genome activation correlates with the presence of Polycomb Repressive Complexes in all three species, while ribosome biogenesis emerges as a predominant attribute in primate embryos, supporting prolonged translation of maternally deposited RNAs. We find that transposable element expression signatures are species-, stage- and lineage-specific. The pluripotency network in the primate epiblast lacks certain regulators operative in mouse, but encompasses WNT components and genes associated with trophoblast specification. Sequential activation of GATA6, SOX17 and GATA4 markers of primitive endoderm identity is conserved in primates. Unexpectedly, OTX2 is also associated with primitive endoderm specification in human and nonhuman primate blastocysts. Our cross-species analysis demarcates both conserved and primate-specific features of preimplantation development and underscores the molecular adaptability of early mammalian embryogenesis.


Development | 2018

Correction: Integrated analysis of single-cell embryo data yields a unified transcriptome signature for the human pre-implantation epiblast (doi: 10.1242/dev.158501)

Giuliano Giuseppe Stirparo; Thorsten Boroviak; Ge Guo; Jennifer Nichols; Austin Smith; Paul Bertone

The supplementary data for Development (2018) 145, [dev158501][1] ([doi:xa010.1242/dev.158501][2]) was incomplete: some rows of data in Table S8 were missing. The intact file is now available online at .nnThe authors apologise to readers


Mechanisms of Development | 2017

The blueprint of primate preimplantation development

Thorsten Boroviak; Giuliano Giuseppe Stirparo; Sabine Dietmann; Irene Herraez; Hisham Mohammed; Wolf Reik; Austin Smith; Erika Sasaki; Jennifer Nichols; Paul Bertone

Preimplantation development in rodent and primate establishes the founding cell population of the foetus in the epiblast and segregates two extraembryonic lineages, trophoblast and hypoblast. Most of our current knowledge about these cell-fate decisions is derived from studies in mouse. However, transcriptional profiling of human embryos has suggested substantial differences to the mouse paradigm. Here, we set out to delineate the primate-specific aspects of preimplantation development. We present a high-quality single-cell RNA-seq dataset from zygote to late blastocyst in marmoset (Callithrix jacchus). In addition, we generated stage-matched samples in mouse (Mus musculus) and re-analysed three human single-cell datasets. Weighted gene network analysis independently identified the establishment of epiblast and hypoblast transcriptional modules. NANOG, SOX2, TDGF1 and TFCP2L1 were highly expressed in the epiblast of all three species. In contrast, KLF17, ARGFX, KHDC3L, LEFTY2 and CTSF represented primate-specific factors of the pluripotency network in vivo. Global features of epiblast and hypoblast segregation included the ERK cascade, apoptosis and extracellular matrix, while we identified elevated levels of BMP and WNT signalling components in primates. Strikingly, the mouse epiblast marker Otx2 is specifically expressed in human and marmoset hypoblast. Our cross-species analysis approach demarcates conserved and primate-specific features of mammalian preimplantation development and provides a rich resource for comparative embryology.

Collaboration


Dive into the Thorsten Boroviak's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Austin Smith

University of Cambridge

View shared research outputs
Top Co-Authors

Avatar

Paul Bertone

Medical Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Erika Sasaki

Central Institute for Experimental Animals

View shared research outputs
Top Co-Authors

Avatar

Ge Guo

Wellcome Trust Centre for Stem Cell Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Remco Loos

European Bioinformatics Institute

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge