Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Thorsten Hagemann is active.

Publication


Featured researches published by Thorsten Hagemann.


Journal of Experimental Medicine | 2008

“Re-educating” tumor-associated macrophages by targeting NF-κB

Thorsten Hagemann; Toby Lawrence; Iain A. McNeish; Kellie A. Charles; Hagen Kulbe; Richard G. Thompson; Stephen C. Robinson; Frances R. Balkwill

The nuclear factor κB (NF-κB) signaling pathway is important in cancer-related inflammation and malignant progression. Here, we describe a new role for NF-κB in cancer in maintaining the immunosuppressive phenotype of tumor-associated macrophages (TAMs). We show that macrophages are polarized via interleukin (IL)-1R and MyD88 to an immunosuppressive “alternative” phenotype that requires IκB kinase β–mediated NF-κB activation. When NF-κB signaling is inhibited specifically in TAMs, they become cytotoxic to tumor cells and switch to a “classically” activated phenotype; IL-12high, major histocompatibility complex IIhigh, but IL-10low and arginase-1low. Targeting NF-κB signaling in TAMs also promotes regression of advanced tumors in vivo by induction of macrophage tumoricidal activity and activation of antitumor activity through IL-12–dependent NK cell recruitment. We provide a rationale for manipulating the phenotype of the abundant macrophage population already located within the tumor microenvironment; the potential to “re-educate” the tumor-promoting macrophage population may prove an effective and novel therapeutic approach for cancer that complements existing therapies.


Journal of Immunology | 2005

Macrophages Induce Invasiveness of Epithelial Cancer Cells Via NF-κB and JNK

Thorsten Hagemann; Julia Wilson; Hagen Kulbe; Ningfeng Fiona Li; David A. Leinster; Kellie A. Charles; Florian Klemm; Tobias Pukrop; Claudia Binder; Frances R. Balkwill

Tumor-associated macrophages may influence tumor progression, angiogenesis and invasion. To investigate mechanisms by which macrophages interact with tumor cells, we developed an in vitro coculture model. Previously we reported that coculture enhanced invasiveness of the tumor cells in a TNF-α- and matrix metalloprotease-dependent manner. In this report, we studied intracellular signaling pathways and induction of inflammatory genes in malignant cells under the influence of macrophage coculture. We report that coculture of macrophages with ovarian or breast cancer cell lines led to TNF-α-dependent activation of JNK and NF-κB pathways in tumor cells, but not in benign immortalized epithelial cells. Tumor cells with increased JNK and NF-κB activity exhibited enhanced invasiveness. Inhibition of the NF-κB pathway by TNF-α neutralizing Abs, an NF-κB inhibitor, RNAi to RelA, or overexpression of IκB inhibited tumor cell invasiveness. Blockade of JNK also significantly reduced invasiveness, but blockade of p38 MAPK or p42 MAPK had no effect. Cocultured tumor cells were screened for the expression of 22 genes associated with inflammation and invasion that also contained an AP-1 and NF-κB binding site. EMMPRIN and MIF were up-regulated in cocultured tumor cells in a JNK- and NF-κB-dependent manner. Knocking down either MIF or EMMPRIN by RNAi in the tumor cells significantly reduced tumor cell invasiveness and matrix metalloprotease activity in the coculture supernatant. We conclude that TNF-α, via NF-κB, and JNK induces MIF and EMMPRIN in macrophage to tumor cell cocultures and this leads to increased invasive capacity of the tumor cells.


Journal of Immunology | 2006

Ovarian cancer cells polarize macrophages toward a tumor-associated phenotype.

Thorsten Hagemann; Julia Wilson; Frances Burke; Hagen Kulbe; Ninfeng Fiona Li; Annette Plüddemann; Kellie A. Charles; Siamon Gordon; Frances R. Balkwill

Tumor-associated macrophages (TAM) may have tumor-promoting activity, but it is not clear how their phenotype is achieved. In this study, we demonstrate that ovarian cancer cells switch cocultured macrophages to a phenotype similar to that found in ovarian tumors. Tumor cells caused dynamic changes in macrophage cytokine, chemokine, and matrix metalloprotease mRNA, and protein-inducing mediators that are found in human cancer. Macrophage mannose, mannose receptor, and scavenger receptors (SR-As) were also up-regulated by coculture, but not by conditioned medium. To further validate the model, we studied SR-A regulation on TAM in vitro and in vivo. Coculture of murine macrophages from mice deficient in TNF-α or its receptors revealed that TNF-α was key to SR-A induction via its p75 receptor. SR-A expression was also reduced in TAM from ovarian cancers treated with anti-TNF-α Abs or grown in TNF-α−/− mice. Chemical communication between tumor cells and macrophages may be important in regulating the cancer cytokine microenvironment.


Journal of Cell Science | 2012

The tumor microenvironment at a glance

Frances R. Balkwill; Melania Capasso; Thorsten Hagemann

Cancers are not just masses of malignant cells but complex ‘rogue’ organs, to which many other cells are recruited and can be corrupted by the transformed cells. Interactions between malignant and non-transformed cells create the tumor microenvironment (TME). The non-malignant cells of the TME


Cancer Research | 2007

The Inflammatory Cytokine Tumor Necrosis Factor-α Generates an Autocrine Tumor-Promoting Network in Epithelial Ovarian Cancer Cells

Hagen Kulbe; Richard B. Thompson; Julia Wilson; Stephen Robinson; Thorsten Hagemann; Rewas Fatah; David Gould; A. Ayhan; Frances R. Balkwill

Constitutive expression of the inflammatory cytokine tumor necrosis factor-alpha (TNF-alpha) is characteristic of malignant ovarian surface epithelium. We investigated the hypothesis that this autocrine action of TNF-alpha generates and sustains a network of other mediators that promote peritoneal cancer growth and spread. When compared with two ovarian cancer cell lines that did not make TNF-alpha, constitutive production of TNF-alpha was associated with greater release of the chemokines CCL2 and CXCL12, the cytokines interleukin-6 (IL-6) and macrophage migration-inhibitory factor (MIF), and the angiogenic factor vascular endothelial growth factor (VEGF). TNF-alpha production was associated also with increased peritoneal dissemination when the ovarian cancer cells were xenografted. We next used RNA interference to generate stable knockdown of TNF-alpha in ovarian cancer cells. Production of CCL2, CXCL12, VEGF, IL-6, and MIF was decreased significantly in these cells compared with wild-type or mock-transfected cells, but in vitro growth rates were unaltered. Tumor growth and dissemination in vivo were significantly reduced when stable knockdown of TNF-alpha was achieved. Tumors derived from TNF-alpha knockdown cells were noninvasive and well circumscribed and showed high levels of apoptosis, even in the smallest deposits. This was reflected in reduced vascularization of TNF-alpha knockdown tumors. Furthermore, culture supernatants from such cells failed to stimulate endothelial cell growth in vitro. We conclude that autocrine production of TNF-alpha by ovarian cancer cells stimulates a constitutive network of other cytokines, angiogenic factors, and chemokines that may act in an autocrine/paracrine manner to promote colonization of the peritoneum and neovascularization of developing tumor deposits.


Journal of Clinical Investigation | 2009

The tumor-promoting actions of TNF-α involve TNFR1 and IL-17 in ovarian cancer in mice and humans

Kellie A. Charles; Hagen Kulbe; Robin Soper; Monica Escorcio-Correia; Toby Lawrence; Anne Schultheis; Probir Chakravarty; Richard G. Thompson; George Kollias; John F. Smyth; Frances R. Balkwill; Thorsten Hagemann

Cytokines orchestrate the tumor-promoting interplay between malignant cells and the immune system. In many experimental and human cancers, the cytokine TNF-alpha is an important component of this interplay, but its effects are pleiotropic and therefore remain to be completely defined. Using a mouse model of ovarian cancer in which either TNF receptor 1 (TNFR1) signaling was manipulated in different leukocyte populations or TNF-alpha was neutralized by antibody treatment, we found that this inflammatory cytokine maintained TNFR1-dependent IL-17 production by CD4+ cells and that this led to myeloid cell recruitment into the tumor microenvironment and enhanced tumor growth. Consistent with this, in patients with advanced cancer, treatment with the TNF-alpha-specific antibody infliximab substantially reduced plasma IL-17 levels. Furthermore, expression of IL-1R and IL-23R was downregulated in CD4+CD25- cells isolated from ascites of ovarian cancer patients treated with infliximab. We have also shown that genes ascribed to the Th17 pathway map closely with the TNF-alpha signaling pathway in ovarian cancer biopsy samples, showing particularly high levels of expression of genes encoding IL-23, components of the NF-kappaB system, TGF-beta1, and proteins involved in neutrophil activation. We conclude that chronic production of TNF-alpha in the tumor microenvironment increases myeloid cell recruitment in an IL-17-dependent manner that contributes to the tumor-promoting action of this proinflammatory cytokine.


Nature | 2014

Inactivation of PI(3)K p110δ breaks regulatory T-cell-mediated immune tolerance to cancer

Khaled Ali; Dalya R. Soond; Roberto Piñeiro; Thorsten Hagemann; Wayne Pearce; Ee Lyn Lim; Hicham Bouabe; Cheryl L. Scudamore; Timothy C. Hancox; Heather Maecker; Lori S. Friedman; Martin Turner; Klaus Okkenhaug; Bart Vanhaesebroeck

Inhibitors against the p110δ isoform of phosphoinositide-3-OH kinase (PI(3)K) have shown remarkable therapeutic efficacy in some human leukaemias. As p110δ is primarily expressed in leukocytes, drugs against p110δ have not been considered for the treatment of solid tumours. Here we report that p110δ inactivation in mice protects against a broad range of cancers, including non-haematological solid tumours. We demonstrate that p110δ inactivation in regulatory T cells unleashes CD8+ cytotoxic T cells and induces tumour regression. Thus, p110δ inhibitors can break tumour-induced immune tolerance and should be considered for wider use in oncology.


Blood | 2009

Regulation of macrophage function in tumors: the multifaceted role of NF-κB

Thorsten Hagemann; Subhra K. Biswas; Toby Lawrence; Antonio Sica; Claire E. Lewis

The pivotal role of tumor-associated macrophages (TAMs) in tumor progression is now well established. TAMs have been shown to influence multiple steps in tumor development including the growth, survival, invasion, and metastasis of tumor cells as well as angiogenesis and lymphangiogenesis in tumors. The molecular circuits that polarize TAMs toward such a protumoral phenotype are now the focus of intense investigation. The transcription factor, nuclear factor-kappaB (NF-kappaB), is a master regulator of many cellular processes and been shown to regulate various pathways that impact on the function of TAMs. Much evidence for this has come from the use of elegant transgenic murine tumor models in which modification of single components of the NF-kappaB signaling pathway has been shown to regulate the pro-tumor repertoire of TAMs. Here, we outline this evidence and attempt to reconcile the various views that have emerged recently over the exact role of NF-kappaB in this phenomenon.


Cancer Research | 2005

The Inflammatory Cytokine Tumor Necrosis Factor-α Regulates Chemokine Receptor Expression on Ovarian Cancer Cells

Hagen Kulbe; Thorsten Hagemann; Piotr W. Szlosarek; Frances R. Balkwill; Julia Wilson

Epithelial ovarian cancer cells express the chemokine receptor, CXCR4, which may be associated with increased survival and metastatic potential, but the regulation of this receptor is not understood. The inflammatory cytokine tumor necrosis factor-alpha (TNF-alpha) is found in ovarian cancer biopsies and is associated with increased tumor grade. In this report, we show that CXCR4 expression on human epithelial ovarian cancer cells is associated with, and can be modulated by, TNF-alpha. Ovarian cancer cells with high endogenous expression of TNF-alpha expressed higher levels of CXCR4 mRNA and protein than cells with low TNF-alpha expression. Stimulation of ovarian cancer cell lines and primary epithelial cancer cells with TNF-alpha resulted in increased CXCR4 mRNA and protein. The TNF-alpha-stimulated increase in CXCR4 mRNA was due partly to de novo synthesis, and up-regulation of CXCR4 cell surface protein increased migration to the CXCR4 ligand CXCL12. CXCR4 mRNA and protein was down-regulated by anti-TNF-alpha antibody or by targeting TNF-alpha mRNA using RNAi. TNF-alpha stimulation activated components of the nuclear factor kappaB pathway, and overexpression of the inhibitor of kappaB also reduced CXCR4 expression. Coculture of macrophages with ovarian cancer cells also resulted in cancer cell up-regulation of CXCR4 mRNA in a TNF-alpha-dependent manner. Finally, there was a correlation between the levels of TNF-alpha and CXCR4 mRNA in clinical biopsies of ovarian cancer, and TNF-alpha protein was expressed in CXCR4-positive tumor cells. TNF-alpha is a critical mediator of tumor promotion in a number of experimental cancers. Our data suggest that one mechanism may be through nuclear factor kappaB-dependent induction of CXCR4.


Journal of Clinical Investigation | 2011

Crosstalk between the canonical NF-κB and Notch signaling pathways inhibits Pparγ expression and promotes pancreatic cancer progression in mice

Eleni Maniati; Maud Bossard; Natalie Cook; Juliana Candido; Nia Emami-Shahri; Sergei A. Nedospasov; Frances R. Balkwill; David A. Tuveson; Thorsten Hagemann

The majority of human pancreatic cancers have activating mutations in the KRAS proto-oncogene. These mutations result in increased activity of the NF-κB pathway and the subsequent constitutive production of proinflammatory cytokines. Here, we show that inhibitor of κB kinase 2 (Ikk2), a component of the canonical NF-κB signaling pathway, synergizes with basal Notch signaling to upregulate transcription of primary Notch target genes, resulting in suppression of antiinflammatory protein expression and promotion of pancreatic carcinogenesis in mice. We found that in the Kras(G12D)Pdx1-cre mouse model of pancreatic cancer, genetic deletion of Ikk2 in initiated pre-malignant epithelial cells substantially delayed pancreatic oncogenesis and resulted in downregulation of the classical Notch target genes Hes1 and Hey1. Tnf-α stimulated canonical NF-κB signaling and, in collaboration with basal Notch signals, induced optimal expression of Notch targets. Mechanistically, Tnf-α stimulation resulted in phosphorylation of histone H3 at the Hes1 promoter, and this signal was lost with Ikk2 deletion. Hes1 suppresses expression of Pparg, which encodes the antiinflammatory nuclear receptor Pparγ. Thus, crosstalk between Tnf-α/Ikk2 and Notch sustains the intrinsic inflammatory profile of transformed cells. These findings reveal what we believe to be a novel interaction between oncogenic inflammation and a major cell fate pathway and show how these pathways can cooperate to promote cancer progression.

Collaboration


Dive into the Thorsten Hagemann's collaboration.

Top Co-Authors

Avatar

Frances R. Balkwill

Queen Mary University of London

View shared research outputs
Top Co-Authors

Avatar

Eleni Maniati

Queen Mary University of London

View shared research outputs
Top Co-Authors

Avatar

Hagen Kulbe

Queen Mary University of London

View shared research outputs
Top Co-Authors

Avatar

Toby Lawrence

Queen Mary University of London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Julia Wilson

Queen Mary University of London

View shared research outputs
Top Co-Authors

Avatar

Maud Bossard

Queen Mary University of London

View shared research outputs
Top Co-Authors

Avatar

Robin Soper

Queen Mary University of London

View shared research outputs
Top Co-Authors

Avatar

Claudia Binder

University of Göttingen

View shared research outputs
Top Co-Authors

Avatar

Richard G. Thompson

Queen Mary University of London

View shared research outputs
Researchain Logo
Decentralizing Knowledge