Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Thorsten Heinekamp is active.

Publication


Featured researches published by Thorsten Heinekamp.


Eukaryotic Cell | 2006

The akuB(KU80) mutant deficient for nonhomologous end joining is a powerful tool for analyzing pathogenicity in Aspergillus fumigatus.

Márcia Eliana da Silva Ferreira; Marcia Regina von Zeska Kress; Marcela Savoldi; Maria Helena S. Goldman; Albert Härtl; Thorsten Heinekamp; Axel A. Brakhage; Gustavo H. Goldman

ABSTRACT To increase the frequency of homologous recombination, we inactivated the KU80 homologue in Aspergillus fumigatus (named akuBKU80). Homologous integration reached about 80% for both calcineurin A (calA) and polyketide synthase pksP (alb1) genes in the akuBKU80 mutant to 3 and 5%, respectively, when using a wild-type A. fumigatus strain. Deletion of akuBKU80 had no influence on pathogenicity in a low-dose murine infection model.


PLOS Pathogens | 2010

HapX-Mediated adaption to iron starvation is crucial for virulence of Aspergillus fumigatus

Markus Schrettl; Nicola Beckmann; John Varga; Thorsten Heinekamp; Ilse D. Jacobsen; Christoph Jöchl; Tarek A. Moussa; Shaohua Wang; Fabio Gsaller; Michael Blatzer; Ernst R. Werner; William C. Niermann; Axel A. Brakhage; Hubertus Haas

Iron is essential for a wide range of cellular processes. Here we show that the bZIP-type regulator HapX is indispensable for the transcriptional remodeling required for adaption to iron starvation in the opportunistic fungal pathogen Aspergillus fumigatus. HapX represses iron-dependent and mitochondrial-localized activities including respiration, TCA cycle, amino acid metabolism, iron-sulfur-cluster and heme biosynthesis. In agreement with the impact on mitochondrial metabolism, HapX-deficiency decreases resistance to tetracycline and increases mitochondrial DNA content. Pathways positively affected by HapX include production of the ribotoxin AspF1 and siderophores, which are known virulence determinants. Iron starvation causes a massive remodeling of the amino acid pool and HapX is essential for the coordination of the production of siderophores and their precursor ornithine. Consistent with HapX-function being limited to iron depleted conditions and A. fumigatus facing iron starvation in the host, HapX-deficiency causes significant attenuation of virulence in a murine model of aspergillosis. Taken together, this study demonstrates that HapX-dependent adaption to conditions of iron starvation is crucial for virulence of A. fumigatus.


Molecular Microbiology | 2008

SreA‐mediated iron regulation in Aspergillus fumigatus

Markus Schrettl; H. Stanley Kim; Martin Eisendle; Claudia Kragl; William C. Nierman; Thorsten Heinekamp; Ernst R. Werner; Ilse D. Jacobsen; Paul Illmer; Hyojeong Yi; Axel A. Brakhage; Hubertus Haas

Aspergillus fumigatus, the most common airborne fungal pathogen of humans, employs two high‐affinity iron uptake systems: iron uptake mediated by the extracellular siderophore triacetylfusarinine C and reductive iron assimilation. Furthermore, A. fumigatus utilizes two intracellular siderophores, ferricrocin and hydroxyferricrocin, to store iron. Siderophore biosynthesis, which is essential for virulence, is repressed by iron. Here we show that this control is mediated by the GATA factor SreA. During iron‐replete conditions, SreA deficiency partially derepressed synthesis of triacetylfusarinine C and uptake of iron resulting in increased cellular accumulation of both iron and ferricrocin. Genome‐wide DNA microarray analysis identified 49 genes that are repressed by iron in an SreA‐dependent manner. This gene set, termed SreA regulon, includes all known genes involved in iron acquisition, putative novel siderophore biosynthetic genes, and also genes not directly linked to iron metabolism. SreA deficiency also caused upregulation of iron‐dependent and antioxidative pathways, probably due to the increased iron content and iron‐mediated oxidative stress. Consistently, the sreA disruption mutant displayed increased sensitivity to iron, menadion and phleomycin but retained wild‐type virulence in a mouse model. As all detrimental effects of sreA disruption are restricted to iron‐replete conditions these data underscore that A. fumigatus faces iron‐depleted conditions during infection.


Molecular Microbiology | 2006

Deletion of the gliP gene of Aspergillus fumigatus results in loss of gliotoxin production but has no effect on virulence of the fungus in a low-dose mouse infection model.

Claudio Kupfahl; Thorsten Heinekamp; Gernot Geginat; Thomas Ruppert; Albert Härtl; Herbert Hof; Axel A. Brakhage

Gliotoxin is a secondary metabolite produced by several fungi including the opportunistic human pathogen Aspergillus fumigatus. As gliotoxin exerts immunosuppressive effects in vitro and in vivo, a role as a virulence determinant in invasive aspergillosis has been discussed for a long time but evidence has not been provided until now. Here, by the use of different selection marker genes A. fumigatus knock‐out strains were generated that are deficient for the non‐ribosomal peptide synthetase GliP, the putative key enzyme of the gliotoxin biosynthesis. Deletion of the gliP gene resulted in loss of gliotoxin production, as analysed by high performance liquid chromatography and tandem mass spectrometry. No differences in morphology or growth kinetics between wild‐type and gliP‐deletion strains were observed. In vitro, the culture supernatant of the gliP‐deficient strains showed a reduced cytotoxic effect on both macrophage‐like cells and T cell lines. In a low‐dose murine infection model of invasive aspergillosis, gliotoxin was detected in the lung and absent when mice were infected with the gliP deletion strain. However, gliP deletion strains showed no difference in virulence compared with the corresponding wild‐type strains. Taken together, the non‐ribosomal peptide synthetase GliP is essential for gliotoxin production in A. fumigatus. Gliotoxin is not required for pathogenicity of the fungus in immunocompromised mice, despite the fact that a reduced cytotoxicity of the culture supernatant of gliP deletion strains was demonstrated.


Applied Microbiology and Biotechnology | 2012

Biosynthesis and function of gliotoxin in Aspergillus fumigatus

Daniel H. Scharf; Thorsten Heinekamp; Nicole Remme; Peter Hortschansky; Axel A. Brakhage; Christian Hertweck

Gliotoxin (GT) is the prototype of the epidithiodioxopiperazine (ETP)-type fungal toxins. GT plays a critical role in the pathobiology of Aspergillus fumigatus. It modulates the immune response and induces apoptosis in different cell types. The toxicity has been attributed to the unusual intramolecular disulfide bridge, which is the functional motif of all ETPs. Because of the extraordinary structure and activity of GT, this fungal metabolite has been the subject of many investigations. The biosynthesis of GT involves unprecedented reactions catalysed by recently discovered enzymes. Here, we summarize the recent progress in elucidating the GT biosynthetic pathway and its role in virulence.


Applied and Environmental Microbiology | 2009

Production of Pyomelanin, a Second Type of Melanin, via the Tyrosine Degradation Pathway in Aspergillus fumigatus

Jeannette Schmaler-Ripcke; Venelina Sugareva; Peter Gebhardt; Robert Winkler; Olaf Kniemeyer; Thorsten Heinekamp; Axel A. Brakhage

ABSTRACT Aspergillus fumigatus is the most important airborne fungal pathogen of immunosuppressed humans. A. fumigatus is able to produce dihydroxynaphthalene melanin, which is predominantly present in the conidia. Its biosynthesis is an important virulence determinant. Here, we show that A. fumigatus is able to produce an alternative melanin, i.e., pyomelanin, by a different pathway, starting from l-tyrosine. Proteome analysis indicated that the l-tyrosine degradation enzymes are synthesized when the fungus is grown with l-tyrosine in the medium. To investigate the pathway in detail, we deleted the genes encoding essential enzymes for pigment production, homogentisate dioxygenase (hmgA) and 4-hydroxyphenylpyruvate dioxygenase (hppD). Comparative Fourier transform infrared spectroscopy of synthetic pyomelanin and pigment extracted from A. fumigatus cultures confirmed the identity of the observed pigment as pyomelanin. In the hmgA deletion strain, HmgA activity was abolished and the accumulation of homogentisic acid provoked an increased pigment formation. In contrast, homogentisic acid and pyomelanin were not observed with an hppD deletion mutant. Germlings of the hppD deletion mutant showed an increased sensitivity to reactive oxygen intermediates. The transcription of both studied genes was induced by l-tyrosine. These results confirmed the function of the deleted genes and the predicted pathway in A. fumigatus. Homogentisic acid is the major intermediate, and the l-tyrosine degradation pathway leading to pyomelanin is similar to that in humans leading to alkaptomelanin.


Journal of the American Chemical Society | 2010

Transannular disulfide formation in gliotoxin biosynthesis and its role in self-resistance of the human pathogen Aspergillus fumigatus.

Daniel H. Scharf; Nicole Remme; Thorsten Heinekamp; Peter Hortschansky; Axel A. Brakhage; Christian Hertweck

Gliotoxin (1), the infamous representative of the group of epipolythiodioxopiperazines (ETPs), is a virulence factor of the human pathogenic fungus Aspergillus fumigatus. The unique redox-sensitive transannular disulfide bridge is critical for deleterious effects caused by redox cycling and protein conjugation in the host. Through a combination of genetic, biochemical, and chemical analyses, we found that 1 results from GliT-mediated oxidation of the corresponding dithiol. In vitro studies using purified GliT demonstrate that the FAD-dependent, homodimeric enzyme utilizes molecular oxygen as terminal electron acceptor with concomitant formation of H(2)O(2). In analogy to the thiol-disulfide oxidoreductase superfamily, a model for dithiol-disulfide exchange involving the conserved CxxC motif is proposed. Notably, while all studied disulfide oxidases invariably form intra- or interchenar disulfide bonds in peptides, GliT is the first studied enzyme producing an epidithio bond. Furthermore, through sensitivity assays using wild type, Delta gliT mutant, and complemented strain, we found that GliT confers resistance to the producing organism. A phylogenetic study revealed that GliT falls into a clade of yet fully uncharacterized fungal gene products deduced from putative ETP biosynthesis gene loci. GliT thus not only represents the prototype of ETP-forming enzymes in eukaryotes but also delineates a novel mechanism for self-resistance.


Frontiers in Microbiology | 2013

Aspergillus fumigatus melanins: interference with the host endocytosis pathway and impact on virulence

Thorsten Heinekamp; Andreas Thywissen; Juliane Macheleidt; Sophia Keller; Vito Valiante; Axel A. Brakhage

The opportunistic human pathogenic fungus Aspergillus fumigatus produces at least two types of melanin, namely pyomelanin and dihydroxynaphthalene (DHN) melanin. Pyomelanin is produced during tyrosine catabolism via accumulation of homogentisic acid. Although pyomelanin protects the fungus against reactive oxygen species (ROS) and acts as a defense compound in response to cell wall stress, mutants deficient for pyomelanin biosynthesis do not differ in virulence when tested in a murine infection model for invasive pulmonary aspergillosis. DHN melanin is responsible for the characteristic gray-greenish color of A. fumigatus conidia. Mutants lacking a functional polyketide synthase PksP, the enzyme responsible for the initial step in DHN-melanin formation, i.e., the synthesis of naphthopyrone, produce white spores and are attenuated in virulence. The activity of PksP was found to be essential not only for inhibition of apoptosis of phagocytes by interfering with the host PI3K/Akt signaling cascade but also for effective inhibition of acidification of conidia-containing phagolysosomes. These features allow A. fumigatus to survive in phagocytes and thereby to escape from human immune effector cells and to become a successful pathogen.


Fungal Genetics and Biology | 2009

The MpkA MAP kinase module regulates cell wall integrity signaling and pyomelanin formation in Aspergillus fumigatus

Vito Valiante; Radhika Jain; Thorsten Heinekamp; Axel A. Brakhage

Aspergillus fumigatus is the most important air-borne fungal pathogen, causing severe infections in immunocompromised patients. Mitogen-activated protein kinase (MAPK) signaling pathways are involved in the regulation of various cellular responses to environmental changes in eukaryotes. Genome Blast analysis revealed that the central core of the cell wall integrity signaling pathway in A. fumigatus is composed of three protein kinases designated Bck1, Mkk2 and MpkA. This pathway is of particular interest because it represents a possible target for new antifungal drugs. Deletion of these genes resulted in severe sensitivity of the mutants against cell wall-disturbing compounds and drastic alterations of the fungal morphology. Western blot analysis demonstrated that Bck1 and Mkk2 directly activate MpkA during vegetative growth and under cell wall stress conditions further confirming that Bck1, Mkk2 and MpkA form a MAP kinase module. Interestingly, this MAP kinase module affects the formation of pyomelanin derived from tyrosine degradation.


Fungal Genetics and Biology | 2009

The 2008 update of the Aspergillus nidulans genome annotation: A community effort

Jennifer R. Wortman; Jane Mabey Gilsenan; Vinita Joardar; Jennifer Deegan; John Clutterbuck; Mikael Rørdam Andersen; David B. Archer; Mojca Benčina; Gerhard Braus; Pedro M. Coutinho; Hans von Döhren; John H. Doonan; Arnold J. M. Driessen; Pawel Durek; Eduardo A. Espeso; Erzsébet Fekete; Michel Flipphi; Carlos Garcia Estrada; Steven Geysens; Gustavo H. Goldman; Piet W.J. de Groot; Kim Hansen; Steven D. Harris; Thorsten Heinekamp; Kerstin Helmstaedt; Bernard Henrissat; Gerald Hofmann; Tim Homan; Tetsuya Horio; Hiroyuki Horiuchi

The identification and annotation of protein-coding genes is one of the primary goals of whole-genome sequencing projects, and the accuracy of predicting the primary protein products of gene expression is vital to the interpretation of the available data and the design of downstream functional applications. Nevertheless, the comprehensive annotation of eukaryotic genomes remains a considerable challenge. Many genomes submitted to public databases, including those of major model organisms, contain significant numbers of wrong and incomplete gene predictions. We present a community-based reannotation of the Aspergillus nidulans genome with the primary goal of increasing the number and quality of protein functional assignments through the careful review of experts in the field of fungal biology.

Collaboration


Dive into the Thorsten Heinekamp's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge