Thorsten Naab
Max Planck Society
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Thorsten Naab.
The Astrophysical Journal | 2010
Benjamin P. Moster; Rachel S. Somerville; Christian Maulbetsch; Frank C. van den Bosch; Andrea V. Macciò; Thorsten Naab; Ludwig Oser
We use a statistical approach to determine the relationship between the stellar masses of galaxies and the masses of the dark matter halos in which they reside. We obtain a parameterized stellar-to-halo mass (SHM) relation by populating halos and subhalos in an N-body simulation with galaxies and requiring that the observed stellar mass function be reproduced. We find good agreement w ith constraints from galaxy-galaxy lensing and predictions of semi-analytic models. Using this mapping, and the positions of the halos and subhalos obtained from the simulation, we find that our model predictions for th e galaxy two-point correlation function (CF) as a function of stellar mass are in excellent agreement with the observed clustering properties in the SDSS at z = 0. We show that the clustering data do not provide additional strong constraints on the SHM function and conclude that our model can therefore predict clustering as a functio n of stellar mass. We compute the conditional mass
Monthly Notices of the Royal Astronomical Society | 2013
Benjamin P. Moster; Thorsten Naab; Simon D. M. White
We present a new statistical method to determine the relationship between the stellar masses of galaxies and the masses of their host dark matter haloes over the entire cosmic history from z � 4 to the present. This multi-epoch abundance matching (MEAM) model self-consistently takes into account that satellite galaxies first become satellites at times earlier than they are observed. We employ a redshift-dependent parameterization of the stellar-to-halo mass relation to populate haloes and subhaloes in the Millennium simulations with galaxies, requiring that the observed stellar mass functions at several redshifts be reproduced simultaneously. We show that physically meaningful growth of massive galaxies is consistent with these data only if observational mass errors are taken into account. Using merger trees extracted from the dark matter simulations in combination with MEAM, we predict the average assembly histories of galaxies, separating into star formation within the galaxies (in-situ) and accretion of stars (ex-situ). Our main results are: The peak star formation efficiency decreases with redshift from 23 per cent at z = 0 to 9 per cent at z = 4 while the corresponding halo mass increases from 10 11.8 M⊙ to 10 12.5 M⊙. The star formation rate of central galaxies peaks at a redshift which depends on halo mass; for massive haloes this peak is at early cosmic times while for low-mass galaxies the peak has not been reached yet. In haloes similar to that of the Milky-Way about half of the central stellar mass is assembled after z = 0.7. In low-mass haloes, the accretion of satellites contributes little to the assembly of their central galaxies, while in massive haloes more than half of the central stellar mass is formed ex-situ with significant accretion of satellites at z < 2. We find that our method implies a cosmic star formation history and an evolution of specific star formation rates which are consistent with those inferred directly. We present convenient fitting functions for stellar masses, star formation rates, and accretion rates as functions of halo mass and redshift.
Monthly Notices of the Royal Astronomical Society | 2011
Michele Cappellari; Eric Emsellem; Davor Krajnović; Richard M. McDermid; Nicholas Scott; G. Verdoes Kleijn; Lisa M. Young; Katherine Alatalo; Roland Bacon; Leo Blitz; Maxime Bois; Frédéric Bournaud; Martin Bureau; Roger L. Davies; Timothy A. Davis; P. T. de Zeeuw; Pierre-Alain Duc; Sadegh Khochfar; Harald Kuntschner; Pierre-Yves Lablanche; Raffaella Morganti; Thorsten Naab; Tom Oosterloo; Marc Sarzi; Paolo Serra; Anne-Marie Weijmans
The ATLAS3D project is a multiwavelength survey combined with a theoretical modelling effort. The observations span from the radio to the millimetre and optical, and provide multicolour imaging, two-dimensional kinematics of the atomic (H i), molecular (CO) and ionized gas (H beta, [O iii] and [N i]), together with the kinematics and population of the stars (H beta, Fe5015 and Mg b), for a carefully selected, volume-limited (1.16 x 105 Mpc3) sample of 260 early-type (elliptical E and lenticular S0) galaxies (ETGs). The models include semi-analytic, N-body binary mergers and cosmological simulations of galaxy formation. Here we present the science goals for the project and introduce the galaxy sample and the selection criteria. The sample consists of nearby (D 15 degrees) morphologically selected ETGs extracted from a parent sample of 871 galaxies (8 per cent E, 22 per cent S0 and 70 per cent spirals) brighter than M-K <-21.5 mag (stellar mass M-star greater than or similar to 6 x109 M-circle dot). We analyse possible selection biases and we conclude that the parent sample is essentially complete and statistically representative of the nearby galaxy population. We present the size-luminosity relation for the spirals and ETGs and show that the ETGs in the ATLAS3D sample define a tight red sequence in a colour-magnitude diagram, with few objects in the transition from the blue cloud. We describe the strategy of the SAURON integral field observations and the extraction of the stellar kinematics with the ppxf method. We find typical 1 Sigma errors of delta V approximate to 6 km s-1, delta Sigma approximate to 7 km s-1, delta h(3) approximate to delta h(4) approximate to 0.03 in the mean velocity, the velocity dispersion and Gauss-Hermite (GH) moments for galaxies with effective dispersion Sigma(e) greater than or similar to 120 km s-1. For galaxies with lower Sigma(e) (approximate to 40 per cent of the sample) the GH moments are gradually penalized by ppxf towards zero to suppress the noise produced by the spectral undersampling and only V and Sigma can be measured. We give an overview of the characteristics of the other main data sets already available for our sample and of the ongoing modelling projects.
The Astrophysical Journal | 2008
X. X. Xue; H.-W. Rix; Gang Zhao; P. Re Fiorentin; Thorsten Naab; Matthias Steinmetz; F. C. van den Bosch; Timothy C. Beers; Young Sun Lee; Eric F. Bell; Constance M. Rockosi; Brian Yanny; Heidi Jo Newberg; Ronald Wilhelm; Xi Kang; M. C. Smith; Donald P. Schneider
We derive new constraints on the mass of the Milky Ways dark matter halo, based on 2401 rigorously selected blue horizontal-branch halo stars from SDSS DR6. This sample enables construction of the full line-of-sight velocity distribution at different galactocentric radii. To interpret these distributions, we compare them to matched mock observations drawn from two different cosmological galaxy formation simulations designed to resemble the Milky Way. This procedure results in an estimate of the Milky Ways circular velocity curve to ~60 kpc, which is found to be slightly falling from the adopted value of 220 km s?1 at the Suns location, and implies -->M( Vcir(r) , derived in statistically independent bins, is found to be consistent with the expectations from an NFW dark matter halo with the established stellar mass components at its center. If we assume that an NFW halo profile of characteristic concentration holds, we can use the observations to estimate the virial mass of the Milky Ways dark matter halo, -->Mvir = 1.0+ 0.3?0.2 ? 1012 M?, which is lower than many previous estimates. We have checked that the particulars of the cosmological simulations are unlikely to introduce systematics larger than the statistical uncertainties. This estimate implies that nearly 40% of the baryons within the virial radius of the Milky Ways dark matter halo reside in the stellar components of our Galaxy. A value for -->Mvir of only ~ -->1 ? 1012 M? also (re)opens the question of whether all of the Milky Ways satellite galaxies are on bound orbits.
Nature | 2012
Michele Cappellari; Richard M. McDermid; Katherine Alatalo; Leo Blitz; Maxime Bois; Frédéric Bournaud; Martin Bureau; Alison F. Crocker; Roger L. Davies; Timothy A. Davis; P. T. de Zeeuw; Pierre-Alain Duc; Eric Emsellem; Sadegh Khochfar; Davor Krajnović; Harald Kuntschner; Pierre-Yves Lablanche; Raffaella Morganti; Thorsten Naab; Tom Oosterloo; Marc Sarzi; Nicholas Scott; Paolo Serra; Anne-Marie Weijmans; Lisa M. Young
Much of our knowledge of galaxies comes from analysing the radiation emitted by their stars, which depends on the present number of each type of star in the galaxy. The present number depends on the stellar initial mass function (IMF), which describes the distribution of stellar masses when the population formed, and knowledge of it is critical to almost every aspect of galaxy evolution. More than 50 years after the first IMF determination, no consensus has emerged on whether it is universal among different types of galaxies. Previous studies indicated that the IMF and the dark matter fraction in galaxy centres cannot both be universal, but they could not convincingly discriminate between the two possibilities. Only recently were indications found that massive elliptical galaxies may not have the same IMF as the Milky Way. Here we report a study of the two-dimensional stellar kinematics for the large representative ATLAS3D sample of nearby early-type galaxies spanning two orders of magnitude in stellar mass, using detailed dynamical models. We find a strong systematic variation in IMF in early-type galaxies as a function of their stellar mass-to-light ratios, producing differences of a factor of up to three in galactic stellar mass. This implies that a galaxy’s IMF depends intimately on the galaxys formation history.
Monthly Notices of the Royal Astronomical Society | 2011
Eric Emsellem; Michele Cappellari; Davor Krajnović; Katherine Alatalo; Leo Blitz; Maxime Bois; Frédéric Bournaud; Martin Bureau; Roger L. Davies; Timothy A. Davis; P. T. de Zeeuw; Sadegh Khochfar; Harald Kuntschner; Pierre-Yves Lablanche; Richard M. McDermid; Raffaella Morganti; Thorsten Naab; Tom Oosterloo; Marc Sarzi; Nicholas Scott; Paolo Serra; Glenn van de Ven; Anne-Marie Weijmans; Lisa M. Young
The definitive version can be found at : http://onlinelibrary.wiley.com/ Copyright Royal Astronomical Society
The Astrophysical Journal | 2011
R. Genzel; S. Newman; Terry Jay Jones; N. M. Förster Schreiber; Kristen L. Shapiro; Shy Genel; S. Lilly; A. Renzini; L. J. Tacconi; N. Bouché; Andreas Burkert; G. Cresci; Peter Buschkamp; C. M. Carollo; Daniel Ceverino; R. Davies; Avishai Dekel; F. Eisenhauer; E. K. S. Hicks; J. Kurk; D. Lutz; C. Mancini; Thorsten Naab; Yingjie Peng; A. Sternberg; D. Vergani; G. Zamorani
We have studied the properties of giant star-forming clumps in five z ~ 2 star-forming disks with deep SINFONI AO spectroscopy at the ESO VLT. The clumps reside in disk regions where the Toomre Q-parameter is below unity, consistent with their being bound and having formed from gravitational instability. Broad H?/[N II] line wings demonstrate that the clumps are launching sites of powerful outflows. The inferred outflow rates are comparable to or exceed the star formation rates, in one case by a factor of eight. Typical clumps may lose a fraction of their original gas by feedback in a few hundred million years, allowing them to migrate into the center. The most active clumps may lose much of their mass and disrupt in the disk. The clumps leave a modest imprint on the gas kinematics. Velocity gradients across the clumps are 10-40 km s?1 kpc?1, similar to the galactic rotation gradients. Given beam smearing and clump sizes, these gradients may be consistent with significant rotational support in typical clumps. Extreme clumps may not be rotationally supported; either they are not virialized or they are predominantly pressure supported. The velocity dispersion is spatially rather constant and increases only weakly with star formation surface density. The large velocity dispersions may be driven by the release of gravitational energy, either at the outer disk/accreting streams interface, and/or by the clump migration within the disk. Spatial variations in the inferred gas phase oxygen abundance are broadly consistent with inside-out growing disks, and/or with inward migration of the clumps.
The Astrophysical Journal | 2012
Ludwig Oser; Thorsten Naab; Jeremiah P. Ostriker; Peter H. Johansson
We analyze 40 cosmological re-simulations of individual massive galaxies with present-day stellar masses of M∗ > 6.3 × 10 10 M⊙ in order to investigate the physical origin of the observed strong increase in galaxy sizes and the decrease of the stellar velocity dispersions since redshift z ≈ 2. At present 25 out of 40 galaxies are quiescent with structural parameters (sizes and velocity dispersions) in agreement with local early type galaxies. At z=2 all simulated galaxies with M∗ & 10 11 M⊙ (11 out of 40) at z=2 are compact with projected half-mass radii of ≈ 0.77 (±0.24) kpc and line-of-sight velocity dispersions within the projected half-mass radius of ≈ 262 (±28) kms −1 (3 out of 11 are already quiescent). Similar to observed compact early-type galaxies at high redshift the simulated galaxies are clearly offset from the local mass-size and mass-velocity dispersion relations. Towards redshift zero the sizes increase by a factor of ∼ 5 − 6, following R1/2 ∝ (1 + z) α with α = −1.44 for quiescent galaxies (α = −1.12 for all galaxies). The velocity dispersions drop by about one-third since z ≈ 2 , following σ1/2 ∝ (1 + z) β with β = 0.44 for the quiescent galaxies (β = 0.37 for all galaxies). The simulated size and dispersion evolution is in good agreement with observations and results from the subsequent accretion and merging of stellar systems at z . 2 which is a natural consequence of the hierarchical structure formation. A significant number of the simulated massive galaxies (7 out of 40) experience no merger more massive than 1:4 (usually considered as major mergers). On average, the dominant accretion mode is stellar minor mergers with a mass-weighted mass-ratio of 1:5. We therefore conclude that the evolution of massive early-type galaxies since z ≈ 2 and their present-day properties are predominantly determined by frequent ’minor’ mergers of moderate mass-ratios and not by major mergers alone.
Monthly Notices of the Royal Astronomical Society | 2013
Michele Cappellari; Nicholas Scott; Katherine Alatalo; Leo Blitz; Maxime Bois; Frédéric Bournaud; Martin Bureau; Alison F. Crocker; Roger L. Davies; Timothy A. Davis; P. T. de Zeeuw; Pierre-Alain Duc; Eric Emsellem; Sadegh Khochfar; Davor Krajnović; Harald Kuntschner; Richard M. McDermid; Raffaella Morganti; Thorsten Naab; Tom Oosterloo; Marc Sarzi; Paolo Serra; Anne-Marie Weijmans; Lisa M. Young
We study the volume-limited and nearly mass-selected (stellar mass M-stars greater than or similar to 6 x 10(9) M circle dot) ATLAS(3D) sample of 260 early-type galaxies (ETGs, ellipticals Es and lenticulars S0s). We construct detailed axisymmetric dynamical models (Jeans Anisotropic MGE), which allow for orbital anisotropy, include a dark matter halo and reproduce in detail both the galaxy images and the high-quality integral-field stellar kinematics out to about 1R(e), the projected half-light radius. We derive accurate total mass-to-light ratios (M/L)(e) and dark matter fractions f(DM), within a sphere of radius centred on the galaxies. We also measure the stellar (M/L)(stars) and derive a median dark matter fraction f(DM) = 13 per cent in our sample. We infer masses M-JAM equivalent to L x (M/L)(e) approximate to 2 x M-1/2, where M-1/2 is the total mass within a sphere enclosing half of the galaxy light. We find that the thin two-dimensional subset spanned by galaxies in the (M-JAM, sigma(e), R-e(maj)) coordinates system, which we call the Mass Plane (MP) has an observed rms scatter of 19 per cent, which implies an intrinsic one of 11 per cent. Here, is the major axis of an isophote enclosing half of the observed galaxy light, while Sigma(e) is measured within that isophote. The MP satisfies the scalar virial relation M-JAM proportional to sigma R-2(e)e(maj) within our tight errors. This show that the larger scatter in the Fundamental Plane (FP) (L, Sigma(e), R-e) is due to stellar population effects [including trends in the stellar initial mass function (IMF)]. It confirms that the FP deviation from the virial exponents is due to a genuine (M/L)(e) variation. However, the details of how both R-e and Sigma(e) are determined are critical in defining the precise deviation from the virial exponents. The main uncertainty in masses or M/L estimates using the scalar virial relation is in the measurement of R-e. This problem is already relevant for nearby galaxies and may cause significant biases in virial mass and size determinations at high redshift. Dynamical models can eliminate these problems. We revisit the (M/L)(e)-Sigma(e) relation, which describes most of the deviations between the MP and the FP. The best-fitting relation is (M/L)(e) sigma(0.72)(e) (r band). It provides an upper limit to any systematic increase of the IMF mass normalization with Sigma(e). The correlation is more shallow and has smaller scatter for slow rotating systems or for galaxies in Virgo. For the latter, when using the best distance estimates, we observe a scatter in (M/L)(e) of 11 per cent, and infer an intrinsic one of 8 per cent. We perform an accurate empirical study of the link between Sigma(e) and the galaxies circular velocity V-circ within 1R(e) (where stars dominate) and find the relation max (V-circ) approximate to 1.76 x Sigma(e), which has an observed scatter of 7 per cent. The accurate parameters described in this paper are used in the companion Paper XX (Cappellari et al.) of this series to explore the variation of global galaxy properties, including the IMF, on the projections of the MP.
Monthly Notices of the Royal Astronomical Society | 2011
Davor Krajnović; Eric Emsellem; Michele Cappellari; Katherine Alatalo; Leo Blitz; Maxime Bois; Frédéric Bournaud; Martin Bureau; Roger L. Davies; Timothy A. Davis; P. T. de Zeeuw; Sadegh Khochfar; Harald Kuntschner; Pierre-Yves Lablanche; Richard M. McDermid; Raffaella Morganti; Thorsten Naab; Tom Oosterloo; Marc Sarzi; Nicholas Scott; Paolo Serra; Anne-Marie Weijmans; Lisa M. Young
We use the ATLAS3D sample of 260 early-type galaxies to study the apparent kinematic misalignment angle, Ψ, defined as the angle between the photometric and kinematic major axes. We find that 71 per cent of nearby early-type galaxies are strictly aligned systems (Ψ≤ 5°), an additional 14 per cent have 5° <Ψ≤ 10° and 90 per cent of galaxies have Ψ≤ 15°. Taking into account measurement uncertainties, 90 per cent of galaxies can be considered aligned to better than 5°, suggesting that only a small fraction of early-type galaxies (˜10 per cent) are not consistent with the axisymmetry within the projected half-light radius. We identify morphological features such as bars and rings (30 per cent), dust structures (16 per cent), blue nuclear colours (6 per cent) and evidence of interactions (8 per cent) visible on ATLAS3D galaxies. We use KINEMETRY to analyse the mean velocity maps and separate galaxies into two broad types of regular and non-regular rotators. We find 82 per cent of regular rotators and 17 per cent of non-regular rotators, with two galaxies that we were not able to classify due to the poor data quality. The non-regular rotators are typically found in dense regions and are massive. We characterize the specific features in the mean velocity and velocity dispersion maps. The majority of galaxies do not have any specific features, but we highlight here the frequency of the kinematically distinct cores (7 per cent of galaxies) and the aligned double peaks in the velocity dispersion maps (4 per cent of galaxies). We separate galaxies into five kinematic groups based on the kinemetric features, which are then used to interpret the (Ψ-ɛ) diagram. Most of the galaxies that are misaligned have complex kinematics and are non-regular rotators. In addition, some show evidence of the interaction and might not be in equilibrium, while some are barred. While the trends are weak, there is a tendency that large values of Ψ are found in galaxies at intermediate environmental densities and among the most massive galaxies in the sample. Taking into account the kinematic alignment and the kinemetric analysis, the majority of early-type galaxies have velocity maps more similar to that of the spiral discs than to that of the remnants of equal-mass mergers. We suggest that the most common formation mechanism for early-type galaxies preserves the axisymmetry of the disc progenitors and their general kinematic properties. Less commonly, the formation process results in a triaxial galaxy with much lower net angular momentum.