Thorsten Wagner
Johannes Kepler University of Linz
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Thorsten Wagner.
Journal of Physical Chemistry C | 2014
Thorsten Wagner; Michael Györök; Daniel Huber; P. Zeppenfeld; Eric Daniel Głowacki
Quinacridone (QA) has recently gained attention as an organic semiconductor with unexpectedly high performance in organic devices. The strong intermolecular connection via hydrogen bonds is expected to promote good structural order. When deposited on a substrate, another relevant factor comes into play, namely the 2D-chirality of the quinacridone molecules adsorbed on a surface. Scanning tunneling microscopy (STM) images of monolayer quinacridone on Ag(111) deposited at room temperature reveal the formation of quasi-one-dimensional rows of parallel quinacridone molecules. These rows are segmented into short stacks of a few molecules in which adjacent, flat-lying molecules of a single handedness are linked via hydrogen bonds. After annealing to a temperature of T = 550–570 K, which is close to the sublimation temperature of bulk quinacridone, the structure changes into a stacking of heterochiral quinacridone dimers with a markedly different intermolecular arrangement. Electron diffraction (LEED) and photoelectron emission microscopy (PEEM) data corroborate the STM findings. These results illustrate how the effects of hydrogen bonding and chirality can compete and give rise to very different (meta)stable structures of quinacridone on surfaces.
Journal of Physical Chemistry C | 2015
Ebrahim Ghanbari; Thorsten Wagner; P. Zeppenfeld
Photoelectron emission microscopy (PEEM) and differential (optical) reflectance spectroscopy (DRS) have proven independently to be versatile analytical tools for monitoring the evolution of organic thin films during growth. In this paper, we present the first experiment in which both techniques have been applied simultaneously and synchronously. We illustrate how the combined PEEM and DRS results can be correlated to obtain an extended perspective on the electronic and optical properties of a molecular film dependent on the film thickness and morphology. As an example, we studied the deposition of the organic molecule α-sexithiophene on Ag(111) in the thickness range from submonolayers up to several monolayers.
Ultramicroscopy | 2015
Thorsten Wagner; Ebrahim Ghanbari; Daniel Huber; P. Zeppenfeld
In this study, we used photo electron emission microscopy (PEEM) to investigate the growth of α-sexithiophene (α-6 T) on Ag(111) surfaces. The experiments were carried out with linearly polarized ultraviolet-light (Hg lamp with hν=4.9 eV) in order to probe the alignment of the molecules on the surface. In particular, we acquired images before, during, and after growth while changing the polarization in a stepwise manner. For the stationary states of the clean and the α-6 T covered surfaces, we monitored the local electron yield and the intensity of the ultraviolet C-light (100-280 nm) reflected from the whole sample using PEEM and a photodiode, respectively. Due to the high ionization potential (IP>5 eV), there is no direct photoelectron emission from the organic crystallites. However, the photoelectron emission of the metal/organic interface is influenced by anisotropic absorption of the incident light beam, since the adsorbed molecules act as dichroic filters with distinct orientations.
Journal of Physical Chemistry C | 2018
A. Navarro-Quezada; Ebrahim Ghanbari; Thorsten Wagner; P. Zeppenfeld
Perfluoropentacene (PFP) is an organic material that has been widely studied over the last years and has already found applications in organic electronics. However, fundamental physical questions, such as the structural formation and the preferential orientation of the molecules during deposition on metal surfaces, are still not fully understood. In this work, we report on a unique in-plane molecular reorientation during the completion of the first monolayer of PFP on the Ag(110) surface. To characterize the molecular alignment, we have monitored the deposition process in real time using polarization-dependent differential reflectance spectroscopy and reflectance anisotropy spectroscopy. Abrupt changes in the optical signals reveal an intricate sequence of reorientation transitions of the PFP molecules upon monolayer completion and during the formation of the second monolayer, eventually leading to a full alignment of the long molecular axis along the [001] direction of the substrate and an enhanced structural ordering. Scanning tunneling microscopy and low-energy electron diffraction confirm the observed molecular reorientation upon monolayer compression and provide further details on the structural and orientational ordering of the PFP monolayer before and after compression.
Synthetic Metals | 2011
Thorsten Wagner; Daniel Roman Fritz; P. Zeppenfeld
Organic Electronics | 2011
Thorsten Wagner; Daniel Roman Fritz; P. Zeppenfeld
Surface Science | 2013
Philipp Kürnsteiner; R. Steinberger; Daniel Primetzhofer; D. Goebl; Thorsten Wagner; Zdena Druckmüllerova; P. Zeppenfeld; P. Bauer
Applied Surface Science | 2013
Thorsten Wagner; Daniel Roman Fritz; P. Zeppenfeld
Journal of Physical Chemistry Letters | 2010
Thomas Brandstetter; Thorsten Wagner; Daniel Roman Fritz; P. Zeppenfeld
Surface Science | 2017
Thorsten Wagner; Daniel Roman Fritz; Robert Zimmerleiter; P. Zeppenfeld