Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Thulasi Warrier is active.

Publication


Featured researches published by Thulasi Warrier.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Nonsteroidal anti-inflammatory drug sensitizes Mycobacterium tuberculosis to endogenous and exogenous antimicrobials

Ben Gold; Maneesh Pingle; Brickner Sj; Shah N; Julia Roberts; Rundell M; Bracken Wc; Thulasi Warrier; Selin Somersan; Venugopal A; Darby C; Jiang X; Warren Jd; Fernandez J; Ouathek Ouerfelli; Nuermberger El; Amy Cunningham-Bussel; Rath P; Chidawanyika T; Deng H; Ronald Realubit; Glickman Jf; Carl Nathan

Existing drugs are slow to eradicate Mycobacterium tuberculosis (Mtb) in patients and have failed to control tuberculosis globally. One reason may be that host conditions impair Mtb’s replication, reducing its sensitivity to most antiinfectives. We devised a high-throughput screen for compounds that kill Mtb when its replication has been halted by reactive nitrogen intermediates (RNIs), acid, hypoxia, and a fatty acid carbon source. At concentrations routinely achieved in human blood, oxyphenbutazone (OPB), an inexpensive anti-inflammatory drug, was selectively mycobactericidal to nonreplicating (NR) Mtb. Its cidal activity depended on mild acid and was augmented by RNIs and fatty acid. Acid and RNIs fostered OPB’s 4-hydroxylation. The resultant 4-butyl-4-hydroxy-1-(4-hydroxyphenyl)-2-phenylpyrazolidine-3,5-dione (4-OH-OPB) killed both replicating and NR Mtb, including Mtb resistant to standard drugs. 4-OH-OPB depleted flavins and formed covalent adducts with N-acetyl-cysteine and mycothiol. 4-OH-OPB killed Mtb synergistically with oxidants and several antituberculosis drugs. Thus, conditions that block Mtb’s replication modify OPB and enhance its cidal action. Modified OPB kills both replicating and NR Mtb and sensitizes both to host-derived and medicinal antimycobacterial agents.


Journal of Medicinal Chemistry | 2014

Synthetic Calanolides with Bactericidal Activity against Replicating and Nonreplicating Mycobacterium tuberculosis

Purong Zheng; Selin Somersan-Karakaya; Shichao Lu; Julia Roberts; Maneesh Pingle; Thulasi Warrier; David Little; Xiaoyong Guo; Steven J. Brickner; Carl Nathan; Ben Gold; Gang Liu

It is urgent to introduce new drugs for tuberculosis to shorten the prolonged course of treatment and control drug-resistant Mycobacterium tuberculosis (Mtb). One strategy toward this goal is to develop antibiotics that eradicate both replicating (R) and nonreplicating (NR) Mtb. Naturally occurring (+)-calanolide A was active against R-Mtb. The present report details the design, synthesis, antimycobacterial activities, and structure-activity relationships of synthetic calanolides. We identified potent dual-active nitro-containing calanolides with minimal in vitro toxicity that were cidal to axenic Mtb and Mtb in human macrophages, while sparing Gram-positive and -negative bacteria and yeast. Two of the nitrobenzofuran-containing lead compounds were found to be genotoxic to mammalian cells. Although genotoxicity precluded clinical progression, the profound, selective mycobactericidal activity of these calanolides will be useful in identifying pathways for killing both R- and NR-Mtb, as well as in further structure-based design of more effective and drug-like antimycobacterial agents.


Journal of the American Chemical Society | 2013

N,C-Capped Dipeptides with Selectivity for Mycobacterial Proteasome over Human Proteasomes: Role of S3 and S1 Binding Pockets

Gang Lin; Tamutenda Chidawanyika; Christopher Tsu; Thulasi Warrier; Julien Vaubourgeix; Christopher Blackburn; Kenneth M. Gigstad; Michael D. Sintchak; Lawrence Dick; Carl Nathan

We identified N,C-capped dipeptides that are selective for the Mycobacterium tuberculosis proteasome over human constitutive and immunoproteasomes. Differences in the S3 and S1 binding pockets appeared to account for the species selectivity. The inhibitors can penetrate mycobacteria and kill nonreplicating M. tuberculosis under nitrosative stress.


European Journal of Medicinal Chemistry | 2014

Benzimidazole-based compounds kill Mycobacterium tuberculosis

Yaling Gong; Selin Somersan Karakaya; Xiaoyong Guo; Purong Zheng; Ben Gold; Yao Ma; David Little; Julia Roberts; Thulasi Warrier; Xiuju Jiang; Maneesh Pingle; Carl Nathan; Gang Liu

Tuberculosis remains one of the deadliest infectious diseases, killing 1.4 million people annually and showing a rapid increase in cases resistant to multiple drugs. New antibiotics against tuberculosis are urgently needed. Here we describe the design, synthesis and structure-activity relationships of a series of benzimidazole-based compounds with activity against Mycobacterium tuberculosis (Mtb) in a replicating state, a physiologically-induced non-replicating state, or both. Compounds 49, 67, 68, 69, 70, and 72, which shared a 5-nitrofuranyl moiety, exhibited high potency and acceptable selectivity indices (SI). As illustrated by compound 70 (MIC90 < 0.049 μg/mL, SI > 512), the 5-nitrofuranyl group was compatible with minimal cytotoxicity and good intra-macrophage killing, although it lacked non-replicating activity when assessed by CFU assays. Compound 70 had low mutagenic potential by SOS Chromotest assay, making this class of compounds good candidates for further evaluation and target identification.


Proceedings of the National Academy of Sciences of the United States of America | 2016

N-methylation of a bactericidal compound as a resistance mechanism in Mycobacterium tuberculosis.

Thulasi Warrier; Kanishk Kapilashrami; Argyrides Argyrou; Thomas R. Ioerger; David Little; Kenan C. Murphy; Madhumitha Nandakumar; Suna Park; Ben Gold; Jianjie Mi; Tuo Zhang; Eugenia Meiler; Mike Rees; Selin Somersan-Karakaya; Esther Porras-De Francisco; María Martínez-Hoyos; Kristin Burns-Huang; Julia Roberts; Yan Ling; Kyu Y. Rhee; Alfonso Mendoza-Losana; Minkui Luo; Carl Nathan

Significance Better understanding of the mechanisms used by bacteria to counter antibacterial agents is essential to cope with the rising prevalence of antimicrobial resistance. Here, we identified the mechanism of resistance of Mycobacterium tuberculosis to an antimycobacterial cyano-substituted fused pyrido-benzimidazole. Clones bearing mutations in a transcription factor, Rv2887, markedly up-regulated the expression of rv0560c, a putative methyltransferase. Rv0560c N-methylated the pyrido-benzimidazole in vitro and in Mycobacterium tuberculosis, abrogating its bactericidal activity. Resistant mutants selected in the absence of rv0560c led to the identification of the target of the compound, the essential oxidoreductase, decaprenylphosphoryl-β-d-ribose 2-oxidase (DprE1). Methylation of an antibacterial compound is a previously uncharacterized mode of antimicrobial resistance. The rising incidence of antimicrobial resistance (AMR) makes it imperative to understand the underlying mechanisms. Mycobacterium tuberculosis (Mtb) is the single leading cause of death from a bacterial pathogen and estimated to be the leading cause of death from AMR. A pyrido-benzimidazole, 14, was reported to have potent bactericidal activity against Mtb. Here, we isolated multiple Mtb clones resistant to 14. Each had mutations in the putative DNA-binding and dimerization domains of rv2887, a gene encoding a transcriptional repressor of the MarR family. The mutations in Rv2887 led to markedly increased expression of rv0560c. We characterized Rv0560c as an S-adenosyl-L-methionine-dependent methyltransferase that N-methylates 14, abolishing its mycobactericidal activity. An Mtb strain lacking rv0560c became resistant to 14 by mutating decaprenylphosphoryl-β-d-ribose 2-oxidase (DprE1), an essential enzyme in arabinogalactan synthesis; 14 proved to be a nanomolar inhibitor of DprE1, and methylation of 14 by Rv0560c abrogated this activity. Thus, 14 joins a growing list of DprE1 inhibitors that are potently mycobactericidal. Bacterial methylation of an antibacterial agent, 14, catalyzed by Rv0560c of Mtb, is a previously unreported mechanism of AMR.


ACS Infectious Diseases | 2015

Identification of Novel Anti-mycobacterial Compounds by Screening a Pharmaceutical Small-Molecule Library against Nonreplicating Mycobacterium tuberculosis

Thulasi Warrier; María Martínez-Hoyos; Manuel Marin-Amieva; Gonzalo Colmenarejo; Esther Porras-De Francisco; Ana Isabel Alvarez-Pedraglio; María Teresa Fraile-Gabaldón; Pedro Alfonso Torres-Gomez; Landys Lopez-Quezada; Ben Gold; Julia Roberts; Yan Ling; Selin Somersan-Karakaya; David Little; Nicholas Cammack; Carl Nathan; Alfonso Mendoza-Losana

Identification of compounds that target metabolically diverse subpopulations of Mycobacterium tuberculosis (Mtb) may contribute to shortening the course of treatment for tuberculosis. This study screened 270,000 compounds from GlaxoSmithKlines collection against Mtb in a nonreplicating (NR) state imposed in vitro by a combination of four host-relevant stresses. Evaluation of 166 confirmed hits led to detailed characterization of 19 compounds for potency, specificity, cytotoxicity, and stability. Compounds representing five scaffolds depended on reactive nitrogen species for selective activity against NR Mtb, and two were stable in the assay conditions. Four novel scaffolds with activity against replicating (R) Mtb were also identified. However, none of the 19 compounds was active against Mtb in both NR and R states. There was minimal overlap between compounds found active against NR Mtb and those previously identified as active against R Mtb, supporting the hypothesis that NR Mtb depends on distinct metabolic pathways for survival.


Journal of Medicinal Chemistry | 2016

Novel Cephalosporins Selectively Active on Nonreplicating Mycobacterium tuberculosis

Ben Gold; Robert A. Smith; Quyen Nguyen; Julia Roberts; Yan Ling; Landys Lopez Quezada; Selin Somersan; Thulasi Warrier; David Little; Maneesh Pingle; David Zhang; Elaine Ballinger; Matthew Zimmerman; Véronique Dartois; Paul R. Hanson; Lester A. Mitscher; Patrick Porubsky; Steven A. Rogers; Frank J. Schoenen; Carl Nathan; Jeffrey Aubé

We report two series of novel cephalosporins that are bactericidal to Mycobacterium tuberculosis alone of the pathogens tested, which only kill M. tuberculosis when its replication is halted by conditions resembling those believed to pertain in the host, and whose bactericidal activity is not dependent upon or enhanced by clavulanate, a β-lactamase inhibitor. The two classes of cephalosporins bear an ester or alternatively an oxadiazole isostere at C-2 of the cephalosporin ring system, a position that is almost exclusively a carboxylic acid in clinically used agents in the class. Representatives of the series kill M. tuberculosis within macrophages without toxicity to the macrophages or other mammalian cells.


Methods of Molecular Biology | 2015

A Multi-stress Model for High Throughput Screening Against Non-replicating Mycobacterium tuberculosis

Ben Gold; Thulasi Warrier; Carl Nathan

Models of non-replication help us understand the biology of persistent Mycobacterium tuberculosis. High throughput screening (HTS) against non-replicating M. tuberculosis may lead to identification of tool compounds that affect pathways on which bacterial survival depends in such states, and to development of drugs that can overcome phenotypic tolerance to conventional antimycobacterial agents, which are mostly active against replicating M. tuberculosis. We describe a multi-stress model of non-replication that mimics some of the microenvironmental conditions that M. tuberculosis faces in the host as adapted for HTS. The model includes acidic pH, mild hypoxia, a flux of nitric oxide and other reactive nitrogen intermediates arising from nitrite at low pH, and low concentrations of a fatty acid (butyrate) as a carbon source.


Proceedings of the National Academy of Sciences of the United States of America | 2017

Rifamycin action on RNA polymerase in antibiotic-tolerant Mycobacterium tuberculosis results in differentially detectable populations

Kohta Saito; Thulasi Warrier; Selin Somersan-Karakaya; Lina Kaminski; Jianjie Mi; Xiuju Jiang; Suna Park; Kristi Shigyo; Ben Gold; Julia Roberts; Elaina Weber; William R. Jacobs; Carl Nathan

Significance Most of the Mycobacterium tuberculosis (Mtb) bacilli in the sputum of most patients with tuberculosis studied to date do not grow on standard agar-based media but rather grow when diluted in liquid media of similar composition. Here, we describe a rigorously standardized and independently replicated method to generate and count these differentially detectable (DD) Mtb in culture. DD Mtb generation required the action of a rifamycin on RNA polymerase after induction of phenotypic tolerance. Generation of these cells in vitro led to identification of one drug that can kill them and should facilitate the discovery of others. Mycobacterium tuberculosis (Mtb) encounters stresses during the pathogenesis and treatment of tuberculosis (TB) that can suppress replication of the bacteria and render them phenotypically tolerant to most available drugs. Where studied, the majority of Mtb in the sputum of most untreated subjects with active TB have been found to be nonreplicating by the criterion that they do not grow as colony-forming units (cfus) when plated on agar. However, these cells are viable because they grow when diluted in liquid media. A method for generating such “differentially detectable” (DD) Mtb in vitro would aid studies of the biology and drug susceptibility of this population, but lack of independent confirmation of reported methods has contributed to skepticism about their existence. Here, we identified confounding artifacts that, when avoided, allowed development of a reliable method of producing cultures of ≥90% DD Mtb in starved cells. We then characterized several drugs according to whether they contribute to the generation of DD Mtb or kill them. Of the agents tested, rifamycins led to DD Mtb generation, an effect lacking in a rifampin-resistant strain with a mutation in rpoB, which encodes the canonical rifampin target, the β subunit of RNA polymerase. In contrast, thioridazine did not generate DD Mtb from starved cells but killed those generated by rifampin.


Antimicrobial Agents and Chemotherapy | 2015

Rapid, Semiquantitative Assay To Discriminate among Compounds with Activity against Replicating or Nonreplicating Mycobacterium tuberculosis

Ben Gold; Julia Roberts; Yan Ling; Landys Lopez Quezada; Jou Glasheen; Elaine Ballinger; Selin Somersan-Karakaya; Thulasi Warrier; J. David Warren; Carl Nathan

ABSTRACT The search for drugs that can kill replicating and nonreplicating Mycobacterium tuberculosis faces practical bottlenecks. Measurement of CFU and discrimination of bacteriostatic from bactericidal activity are costly in compounds, supplies, labor, and time. Testing compounds against M. tuberculosis under conditions that prevent the replication of M. tuberculosis often involves a second phase of the test in which conditions are altered to permit the replication of bacteria that survived the first phase. False-positive determinations of activity against nonreplicating M. tuberculosis may arise from carryover of compounds from the nonreplicating stage of the assay that act in the replicating stage. We mitigate these problems by carrying out a 96-well microplate liquid MIC assay and then transferring an aliquot of each well to a second set of plates in which each well contains agar supplemented with activated charcoal. After 7 to 10 days—about 2 weeks sooner than required to count CFU—fluorometry reveals whether M. tuberculosis bacilli in each well have replicated extensively enough to reduce a resazurin dye added for the final hour. This charcoal agar resazurin assay (CARA) distinguishes between bacterial biomasses in any two wells that differ by 2 to 3 log10 CFU. The CARA thus serves as a pretest and semiquantitative surrogate for longer, more laborious, and expensive CFU-based assays, helps distinguish bactericidal from bacteriostatic activity, and identifies compounds that are active under replicating conditions, nonreplicating conditions, or both. Results for 14 antimycobacterial compounds, including tuberculosis (TB) drugs, revealed that PA-824 (pretomanid) and TMC207 (bedaquiline) are largely bacteriostatic.

Collaboration


Dive into the Thulasi Warrier's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge