Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Thurmon E. Lockhart is active.

Publication


Featured researches published by Thurmon E. Lockhart.


Ergonomics | 2008

Differentiating fall-prone and healthy adults using local dynamic stability

Thurmon E. Lockhart; Juhua Liu

Variability in kinematic and spatio-temporal gait parameters has long been equated with stability and used to differentiate fallers from non-fallers. Recently, a mathematically rigorous measure of local dynamic stability has been proposed based on the non-linear dynamics theory to differentiate fallers from non-fallers. This study investigated whether the assessment of local dynamic stability can identify fall-prone elderly individuals who were unable to successfully avoid slip-induced falls. Five healthy young, four healthy elderly and four fall-prone elderly individuals participated in a walking experiment. Local dynamic stability was quantified by the maximum Lyapunov exponent. The fall-prone elderly were found to exhibit significantly lower local dynamic stability (i.e. greater sensitivity to local perturbations), as compared to their healthy counterparts. In addition to providing evidence that the increased falls of the elderly may be due to the inability to attenuate/control stride-to-stride disturbances during locomotion, the current study proposed the opportunity of using local dynamic stability as a potential indicator of risk of falling. Early identification of individuals with a higher risk of falling is important for effective fall prevention. The findings from this study suggest that local dynamic stability may be used as a potential fall predictor to differentiate fall-prone adults.


Ergonomics | 2001

Human-centred approaches in slipperiness measurement

Raoul Grönqvist; John D.A. Abeysekera; Gunvor Gard; Simon M. Hsiang; Tom B. Leamon; Dava J. Newman; Krystyna Gielo-Perczak; Thurmon E. Lockhart; Clive Yi Chung Pai

A number of human—centred methodologies subjective, objective, and combined are used for slipperiness measurement. They comprise a variety of approaches from biomechanically-oriented experiments to psychophysical tests and subjective evaluations. The objective of this paper is to review some of the research done in the field, including such topics as awareness and perception of slipperiness, postural and balance control, rating scales for balance, adaptation to slippery conditions, measurement of unexpected movements, kinematics of slipping, and protective movements during falling. The role of human factors in slips and falls will be discussed. Strengths and weaknesses of human-centred approaches in relation to mechanical slip test methodologies are considered. Current friction-based criteria and thresholds for walking without slipping are reviewed for a number of work tasks. These include activities such as walking on a level or an inclined surface, running, stopping and jumping, as well as stair ascent and descent, manual exertion (pushing and pulling, load carrying, lifting) and particular concerns of the elderly and mobility disabled persons. Some future directions for slipperiness measurement and research in the field of slips and falls are outlined. Human-centred approaches for slipperiness measurement do have many applications. First, they are utilized to develop research hypotheses and models to predict workplace risks caused by slipping. Second, they are important alternatives to apparatus-based friction measurements and are used to validate such methodologies. Third, they are used as practical tools for evaluating and monitoring slip resistance properties of footwear, anti-skid devices and floor surfaces.


Gait & Posture | 2008

Effects of quadriceps fatigue on the biomechanics of gait and slip propensity

Prakriti Parijat; Thurmon E. Lockhart

This study examines how lower extremity fatigue of the quadriceps alters gait variables related to slip propensity. Sixteen healthy young adults were recruited to walk across vinyl floor surfaces in states of fatigue and no fatigue. Kinematic and kinetic data were collected using a three-dimensional motion analysis system and force plates. The results indicated a significant increase in both the heel contact velocity and required coefficient of friction and a decrease in the transitional acceleration of the whole body center of mass and peak knee joint moment in the fatigue trials. Thus, suggesting that slip propensity could increase with fatigue. Additionally, there was increased knee flexion and reduced ankle dorsiflexion at the heel contact phase of the gait cycle during fatigue trials. These findings provide new insights into the biomechanical relationship between localized muscle fatigue and gait parameters associated with slip propensity. The present study concluded that localized muscle fatigue affects gait parameters and hence can be considered as a potential risk factor for slip-induced falls.


Safety Science | 2002

Effects of age related sensory degradation on perception of floor slipperiness and associated slip parameters

Thurmon E. Lockhart; Jeffrey C. Woldstad; James L. Smith; Jerry D. Ramsey

A laboratory study was conducted to determine how sensory changes in elderly people affect subjective assessments of floor slipperiness, and associated friction demand characteristics and slip distance. To relate these parameters to actual slip and fall incidents, 30 subjects from two age groups (young and elderly) walked around a circular track on the slippery and non-slippery floor surfaces, while wearing a safety harness to prevent injury in case of a slip or fall. Prior to the walking experiment, the Sensory Organization Test was performed. During the experiment, subjective assessments of surface slipperiness of the floor were obtained prior to walking and after walking on the floor. Slip distance, required coefficient of friction (RCOF) and adjusted friction utilization (AFU) were assessed utilizing motion analysis and force platform systems. The results indicated that sensory changes in the elderly increased the likelihood of slips and falls more than their younger counterparts. This was due to incorrect perceptions of floor slipperiness, and uncompensated slip parameters such as slip distance and adjusted friction utilization.


Ergonomics | 2008

Effects of lower extremity muscle fatigue on the outcomes of slip-induced falls

Prakriti Parijat; Thurmon E. Lockhart

Slip-induced fall accidents continue to be a significant cause of fatal injuries and economic losses. Identifying the risk factors causing slip-induced falls is key to developing better preventive measures to reduce fall accidents. Although epidemiological studies suggest localised muscle fatigue may be one of the risk factors for slip-induced falls, there has been no documented biomechanical study examining the relationship between fatigue and fall accidents. As such, the overall objective of the current study was to investigate the effects of localised muscle fatigue of the quadriceps on the slip initiation and slip recovery phases of slip-induced falls. Sixteen healthy, young participants were recruited to walk across a vinyl floor surface in two different sessions (fatigue and no fatigue). Kinematic and kinetic data were collected using a 3-D motion analysis system and force plates during both sessions. Results suggest that localised muscle fatigue of the quadriceps affected various kinematic and kinetic gait variables that are linked with a higher risk of slip-induced falls. Additionally, the results indicated that localised muscle fatigue of the knee extensor muscle caused a delayed response in producing an effective joint moment and base of support using the trailing limb to recover from a fall. The findings from this study indicate that localised muscle fatigue is a potential risk factor causing slip-induced falls.


Research Quarterly for Exercise and Sport | 2004

Gender differences among sagittal plane knee kinematic and ground reaction force characteristics during a rapid sprint and cut maneuver.

C. Roger James; Phillip S. Sizer; Dw Starch; Thurmon E. Lockhart; James R. Slauterbeck

Abstract Women are more prone to anterior cruciate ligament (ACL) injury during cutting sports than men. The purpose of this study was to examine knee kinematic and ground reaction forces (GRF) differences between genders during cutting. Male and female athletes performed cutting trials while force platform and video data were recorded (180 Hz). Differences (p ≤ .05) were observed between groups for knee flexion at contact and GRF at maximum knee flexion. Women averaged 5.8° less flexion at contact and 1.0 N·(kg·m·s1)−1 greater GRF at maximum flexion. Knee range of motion and peak GRF variables were not significantly different, but women had greater values. Women exhibited technique characteristics believed to increase ACL injury risk, but men exhibiting similar characteristics were also observed and could also be at risk.


international conference on robotics and automation | 2008

Local Dynamic Stability Assessment of Motion Impaired Elderly Using Electronic Textile Pants

Jian Liu; Thurmon E. Lockhart; Mark T. Jones; Thomas L. Martin

A clear association has been demonstrated between gait stability and falls in the elderly. Integration of wearable computing and human dynamic stability measures into home automation systems may help differentiate fall-prone individuals in a residential environment. The objective of the current study was to evaluate the capability of a pair of electronic textile (e-textile) pants system to assess local dynamic stability and to differentiate motion-impaired elderly from their healthy counterparts. A pair of e-textile pants comprised of numerous e-TAGs at locations corresponding to lower extremity joints was developed to collect acceleration, angular velocity and piezoelectric data. Four motion-impaired elderly together with nine healthy individuals (both young and old) participated in treadmill walking with a motion capture system simultaneously collecting kinematic data. Local dynamic stability, characterized by maximum Lyapunov exponent, was computed based on vertical acceleration and angular velocity at lower extremity joints for the measurements from both e-textile and motion capture systems. Results indicated that the motion-impaired elderly had significantly higher maximum Lyapunov exponents (computed from vertical acceleration data) than healthy individuals at the right ankle and hip joints. In addition, maximum Lyapunov exponents assessed by the motion capture system were found to be significantly higher than those assessed by the e-textile system. Despite the difference between these measurement techniques, attaching accelerometers at the ankle and hip joints was shown to be an effective sensor configuration. It was concluded that the e-textile pants system, via dynamic stability assessment, has the potential to identify motion-impaired elderly.


Gait & Posture | 2009

Age-Related Joint Moment Characteristics During Normal Gait and Successful Reactive-Recovery from Unexpected Slip Perturbations

Jian Liu; Thurmon E. Lockhart

The objective of the current study was to investigate the effects of aging on 3D lower extremity joint moments during successful reactive-recovery from unexpected slips. Unexpected slips were induced by having participants walk over a slippery floor surface. Successful reactive-recovery trials from nine young and nine elderly participants were identified and analyzed. Three-dimensional inverse dynamics were implemented to calculate reactive joint moments at the ankle, knee, and hip joints. Peak joint moment magnitude and the speed of peak joint moment generation were used to describe the balance recovery strategies from unexpected slips. Results indicated significantly higher peak joint moments in recovery than in normal walking for both the young and elderly. Meanwhile, during reactive-recovery, the elderly were found to utilize both frontal and sagittal joint moments while the younger adults relied primarily on sagittal joint moment. It was concluded that the ankle and knee joints were critical in controlling sagittal plane motion disturbance, while the hip joint was mainly responsible for stabilizing upper body balance in the frontal plane. This study confirmed age-related differences in joint moment generation during unexpected slips. Additionally, implementing 3D analysis is recommended in future slips and falls research.


IEEE Transactions on Biomedical Engineering | 2014

Development and Evaluation of a Prior-to-Impact Fall Event Detection Algorithm

Jian Liu; Thurmon E. Lockhart

Automatic fall event detection has attracted research attention recently for its potential application in fall alarming system and wearable fall injury prevention system. Nevertheless, existing fall detection research is facing various limitations. The current study aimed to develop and validate a new fall detection algorithm using 2-D information (i.e., trunk angular velocity and trunk angle). Ten healthy elderly were involved in a laboratory study. Sagittal trunk angular kinematics was measured using inertial measurement unit during slip-induced backward falls and a variety of daily activities. The new algorithm was, on average, able to detect backward falls prior to impact, with 100% sensitivity, 95.65% specificity, and 255 ms response time. Therefore, it was concluded that the new fall detection algorithm was able to effectively detect falls during motion for the elderly population.


Journal of Biomechanics | 2012

Effects of obesity on slip-induced fall risks among young male adults.

Xuefang Wu; Thurmon E. Lockhart; Han T. Yeoh

Obesity is associated with structural and functional limitations with impairment of normal gait. Although falls have been identified as the most common cause of injuries in the obese, the mechanisms associated with increased fall risk among the obese population are still unknown. The purpose of this study was to investigate the influence of gait adaptations of the obese individuals and its implication on risk of slip initiations as measured by friction demand characteristics. To exclude the aging and gender effects, a total of ten healthy young male adults participated in the study. Kinematic and kinetic data were collected using a three-dimensional motion analysis system and force plates while subjects were walking at their self-selected walking pace. Results indicated that young obese adults walked similarly as their lean counterparts except for exhibiting greater step width and higher transversal friction demand, suggesting that slip-induced fall risks are similar along the horizontal direction, but increased along the transversal direction under certain floor conditions.

Collaboration


Dive into the Thurmon E. Lockhart's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sukwon Kim

Chonbuk National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Abraham Lieberman

St. Joseph's Hospital and Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge