Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ti Zhang is active.

Publication


Featured researches published by Ti Zhang.


Journal of Biomedical Optics | 2013

Photoacoustic contrast imaging of biological tissues with nanodiamonds fabricated for high near-infrared absorbance

Ti Zhang; Huizhong Cui; Chia-Yi Fang; Long-Jyun Su; Shenqiang Ren; Huan-Cheng Chang; Xinmai Yang; M. Laird Forrest

Abstract. Radiation-damaged nanodiamonds (DNDs) are potentially ideal optical contrast agents for photoacoustic (PA) imaging in biological tissues due to their low toxicity and high optical absorbance. PA imaging contrast agents have been limited to quantum dots and gold particles, since most existing carbon-based nanoparticles, including fluorescent nanodiamonds, do not have sufficient optical absorption in the near-infrared (NIR) range. A new DND by He+ ion beam irradiation with very high NIR absorption was synthesized. These DNDs produced a 71-fold higher PA signal on a molar basis than similarly dimensioned gold nanorods, and 7.1 fmol of DNDs injected into rodents could be clearly imaged 3 mm below the skin surface with PA signal enhancement of 567% using an 820-nm laser wavelength.


Nanomedicine: Nanotechnology, Biology and Medicine | 2015

Targeted nanodiamonds as phenotype-specific photoacoustic contrast agents for breast cancer

Ti Zhang; Huizhong Cui; Chia-Yi Fang; Kun Cheng; Xinmai Yang; Huan-Cheng Chang; M. Laird Forrest

The aim is to develop irradiated nanodiamonds (INDs) as a molecularly targeted contrast agent for high-resolution and phenotype-specific detection of breast cancer with photoacoustic (PA) imaging. The surface of acid treated radiation-damaged nanodiamonds was grafted with PEG to improve its stability and circulation time in blood, followed by conjugation to an anti-HER2 peptide with a final nanoparticle size of approximately 92 nm. Immunocompetent mice bearing orthotopic HER2-positive or negative tumors were administered INDs and PA imaged using an 820-nm near-infrared laser. PA images demonstrated that INDs accumulate in tumors and completely delineated the entire tumor within 10 h. HER2 targeting significantly enhanced imaging of HER2-positive tumors. Pathological examination demonstrated INDs are nontoxic. PA technology is adaptable to low-cost bedside medicine, and with new contrast agents described herein, PA can achieve high-resolution (sub-mm) and phenotype-specific monitoring of cancer growth.


Nanomedicine: Nanotechnology, Biology and Medicine | 2014

CD44-tropic polymeric nanocarrier for breast cancer targeted rapamycin chemotherapy

Yunqi Zhao; Ti Zhang; Shaofeng Duan; Neal M. Davies; M. Laird Forrest

UNLABELLED In contrast with the conventional targeting of nanoparticles to cancer cells with antibody or peptide conjugates, a hyaluronic acid (HA) matrix nanoparticle with intrinsic-CD44-tropism was developed to deliver rapamycin for localized CD44-positive breast cancer treatment. Rapamycin was chemically conjugated to the particle surface via a novel sustained-release linker, 3-amino-4-methoxy-benzoic acid. The release of the drug from the HA nanoparticle was improved by 42-fold compared to HA-temsirolimus in buffered saline. In CD44-positive MDA-MB-468 cells, using HA as drug delivery carrier, the cell viability was significantly decreased compared to free rapamycin and CD44-blocked controls. Rat pharmacokinetics showed that the area under the curve of HA nanoparticle formulation was 2.96-fold greater than that of the free drug, and the concomitant total body clearance was 8.82-fold slower. Moreover, in immunocompetent BALB/c mice bearing CD44-positive 4T1.2neu breast cancer, the rapamycin-loaded HA particles significantly improved animal survival, suppressed tumor growth and reduced the prevalence of lung metastasis. FROM THE CLINICAL EDITOR This study demonstrates increased efficiency of rapamycin delivery and consequential treatment effects in a breast cancer model by hyaluronic acid - L-rapamycin conjugates with intrinsic tropism for CD44-positive cells.


Applied Physics Letters | 2013

Laser-enhanced cavitation during high intensity focused ultrasound: An in vivo study

Huizhong Cui; Ti Zhang; Xinmai Yang

Laser-enhanced cavitation during high intensity focused ultrasound (HIFU) was studied in vivo using a small animal model. Laser light was employed to illuminate the sample concurrently with HIFU radiation. The resulting cavitation was detected with a passive cavitation detector. The in vivo measurements were made under different combinations of HIFU treatment depths, laser wavelengths, and HIFU durations. The results demonstrated that concurrent light illumination during HIFU has the potential to enhance cavitation effect by reducing cavitation threshold in vivo.


Langmuir | 2015

Phospholipid composition modulates carbon nanodiamond-induced alterations in phospholipid domain formation.

Aishik Chakraborty; Nicolas J. Mucci; Ming Li Tan; Ashleigh Steckley; Ti Zhang; M. Laird Forrest; Prajnaparamita Dhar

The focus of this work is to elucidate how phospholipid composition can modulate lipid nanoparticle interactions in phospholipid monolayer systems. We report on alterations in lipid domain formation induced by anionically engineered carbon nanodiamonds (ECNs) as a function of lipid headgroup charge and alkyl chain saturation. Using surface pressure vs area isotherms, monolayer compressibility, and fluorescence microscopy, we found that anionic ECNs induced domain shape alterations in zwitterionic phosphatidylcholine lipids, irrespective of the lipid alkyl chain saturation, even when the surface pressure vs area isotherms did not show any significant changes. Bean-shaped structures characteristic of dipalmitoylphosphatidylcholine (DPPC) were converted to multilobed, fractal, or spiral domains as a result of exposure to ECNs, indicating that ECNs lower the line tension between domains in the case of zwitterionic lipids. For membrane systems containing anionic phospholipids, ECN-induced changes in domain packing were related to the electrostatic interactions between the anionic ECNs and the anionic lipid headgroups, even when zwitterionic lipids are present in excess. By comparing the measured size distributions with our recently developed theory derived by minimizing the free energy associated with the domain energy and mixing entropy, we found that the change in line tension induced by anionic ECNs is dominated by the charge in the condensed lipid domains. Atomic force microscopy images of the transferred anionic films confirm that the location of the anionic ECNs in the lipid monolayers is also modulated by the charge on the condensed lipid domains. Because biological membranes such as lung surfactants contain both saturated and unsaturated phospholipids with different lipid headgroup charges, our results suggest that when studying potential adverse effects of nanoparticles on biological systems the role of lipid compositions cannot be neglected.


Molecular Pharmaceutics | 2016

Hyaluronic acid molecular weight determines lung clearance and biodistribution after instillation

Christopher Kuehl; Ti Zhang; Lisa M. Kaminskas; Christopher J. H. Porter; Neal M. Davies; Laird Forrest; Cory Berkland

Hyaluronic acid (HA) has emerged as a versatile polymer for drug delivery. Multiple commercial products utilize HA, it can be obtained in a variety of molecular weights, and it offers chemical handles for cross-linkers, drugs, or imaging agents. Previous studies have investigated multiple administration routes, but the absorption, biodistribution, and pharmacokinetics of HA after delivery to the lung is relatively unknown. Here, pharmacokinetic parameters were investigated by delivering different molecular weights of HA (between 7 and 741 kDa) to the lungs of mice. HA was labeled with either a near-infrared dye or with iodine-125 conjugated to HA using a tyrosine linker. In initial studies, dye-labeled HA was instilled into the lungs and fluorescent images of organs were collected at 1, 8, and 24 h post administration. Data suggested longer lung persistence of higher molecular weight HA, but signal diminished for all molecular weights at 8 h. To better quantitate pharmacokinetic parameters, different molecular weights of iodine-125 labeled HA were instilled and organ radioactivity was determined after 1, 2, 4, 6, and 8 h. The data showed that, after instillation, the lungs contained the highest levels of HA, as expected, followed by the gastrointestinal tract. Smaller molecular weights of HA showed more rapid systemic distribution, while 67 and 215 kDa HA showed longer persistence in the lungs. Lung exposure appeared to be optimum in this size range due to the rapid absorption of <67 kDa HA and the poor lung penetration and mucociliary clearance of viscous solutions of HA > 215 kDa. The versatility of HA molecular weight and conjugation chemistries may, therefore, provide new opportunities to extend pulmonary drug exposure and potentially facilitate access to lymph nodes draining the pulmonary bed.


Applied Spectroscopy | 2016

Development and Validation of an Inductively Coupled Plasma Mass Spectrometry (ICP-MS) Method for Quantitative Analysis of Platinum in Plasma, Urine, and Tissues

Ti Zhang; Shuang Cai; Wai Chee Forrest; Eva Mohr; Qiuhong Yang; M. Laird Forrest

Cisplatin, a platinum chemotherapeutic, is one of the most commonly used chemotherapeutic agents for many solid tumors. In this work, we developed and validated an inductively coupled plasma mass spectrometry (ICP-MS) method for quantitative determination of platinum levels in rat urine, plasma, and tissue matrices including liver, brain, lungs, kidney, muscle, heart, spleen, bladder, and lymph nodes. The tissues were processed using a microwave accelerated reaction system (MARS) system prior to analysis on an Agilent 7500 ICP-MS. According to the Food and Drug Administration guidance for industry, bioanalytical validation parameters of the method, such as selectivity, accuracy, precision, recovery, and stability were evaluated in rat biological samples. Our data suggested that the method was selective for platinum without interferences caused by other presenting elements, and the lower limit of quantification was 0.5 ppb. The accuracy and precision of the method were within 15% variation and the recoveries of platinum for all tissue matrices examined were determined to be 85–115% of the theoretical values. The stability of the platinum-containing solutions, including calibration standards, stock solutions, and processed samples in rat biological matrices was investigated. Results indicated that the samples were stable after three cycles of freeze–thaw and for up to three months.


American Journal of Veterinary Research | 2016

Phase I-II clinical trial of hyaluronan-cisplatin nanoconjugate in dogs with naturally occurring malignant tumors

Shuang Cai; Ti Zhang; Wai Chee Forrest; Qiuhong Yang; Chad Groer; Eva Mohr; Daniel Aires; Sandra M. Axiak-Bechtel; Brian K. Flesner; Carolyn J. Henry; Kim A. Selting; Deborah Tate; Jeffrey A. Swarz; Jeffrey N. Bryan; M. Laird Forrest

OBJECTIVE To conduct a phase I-II clinical trial of hyaluronan-cisplatin nanoconjugate (HA-Pt) in dogs with naturally occurring malignant tumors. ANIMALS 18 healthy rats, 9 healthy mice, and 16 dogs with cancer. PROCEDURES HA-Pt was prepared and tested by inductively coupled plasma mass spectrometry; DNA-platinum adduct formation and antiproliferation effects of cisplatin and HA-Pt were compared in vitro. Effects of cisplatin (IV) and HA-Pt (SC) in rodents were tested by clinicopathologic assays. In the clinical trial, dogs with cancer received 1 to 4 injections of HA-Pt (10 to 30 mg/m(2), intratumoral or peritumoral, q 3 wk). Blood samples were collected for pharmacokinetic analysis; CBC, serum BUN and creatinine concentration measurement, and urinalysis were conducted before and 1 week after each treatment. Some dogs underwent hepatic enzyme testing. Tumors were measured before the first treatment and 3 weeks after each treatment to assess response. RESULTS No adverse drug effects were detected in pretrial assessments in rodents. Seven of 16 dogs completed the study; 3 had complete tumor responses, 3 had stable disease, and 1 had progressive disease. Three of 7 dogs with oral and nasal squamous cell carcinoma (SCC) that completed the study had complete responses. Myelosuppression and cardiotoxicosis were identified in 6 and 2 dogs, respectively; none had nephrotoxicosis. Four of 5 dogs with hepatic enzymes assessed had increased ALT activities, attributed to diaquated cisplatin products in the HA-Pt. Pharmacokinetic data fit a 3-compartment model. CONCLUSIONS AND CLINICAL RELEVANCE HA-Pt treatment resulted in positive tumor responses in some dogs, primarily those with SCC. The adverse effect rate was high. IMPACT FOR HUMAN MEDICINE Oral SCC in dogs has characteristics similar to human head and neck SCC; these results could be useful in developing human treatments.


Therapeutic Delivery | 2015

Combining hard and soft magnetism into a single core-shell nanoparticle to achieve both hyperthermia and image contrast.

Qiuhong Yang; Maogang Gong; Shuang Cai; Ti Zhang; Justin T. Douglas; Viktor Chikan; Neal M. Davies; Phil Lee; In-Young Choi; Shenqiang Ren; M. Laird Forrest

BACKGROUND A biocompatible core/shell structured magnetic nanoparticles (MNPs) was developed to mediate simultaneous cancer therapy and imaging. METHODS & RESULTS A 22-nm MNP was first synthesized via magnetically coupling hard (FePt) and soft (Fe3O4) materials to produce high relative energy transfer. Colloidal stability of the FePt@Fe3O4 MNPs was achieved through surface modification with silane-polyethylene glycol (PEG). Intravenous administration of PEG-MNPs into tumor-bearing mice resulted in a sustained particle accumulation in the tumor region, and the tumor burden of treated mice was a third that of the mice in control groups 2 weeks after a local hyperthermia treatment. In vivo magnetic resonance imaging exhibited enhanced T2 contrast in the tumor region. CONCLUSION This work has demonstrated the feasibility of cancer theranostics with PEG-MNPs.


Proceedings of SPIE | 2013

In vivo photoacoustic imaging of breast cancer tumor with HER2-targeted nanodiamonds

Ti Zhang; Huizhong Cui; Chia-Yi Fang; Janggun Jo; Xinmai Yang; Huan-Cheng Chang; M. Laird Forrest

Radiation-damaged nanodiamonds (NDs) are ideal optical contrast agents for photoacoustic (PA) imaging in biological tissues due to their good biocompatibility and high optical absorbance in the near-infrared (NIR) range. Acid treated NDs are oxidized to form carboxyl groups on the surface, functionalized with polyethylene glycol (PEG) and human epidermal growth factor receptor 2 (HER2) targeting ligand for breast cancer tumor imaging. Because of the specific binding of the ligand conjugated NDs to the HER2-overexpressing murine breast cancer cells (4T1.2 neu), the tumor tissues are significantly delineated from the surrounding normal tissue at wavelength of 820 nm under the PA imaging modality. Moreover, HER2 targeted NDs (HER2-PEG-NDs) result in higher accumulation in HER2 positive breast tumors as compared to non-targeted NDs after intravenous injection (i.v.). Longer retention time of HER-PEG-NDs is observed in HER2 overexpressing tumor model than that in negative tumor model (4T1.2). This demonstrates that targeting moiety conjugated NDs have great potential for the sensitive detection of cancer tumors and provide an attractive delivery strategy for anti-cancer drugs.

Collaboration


Dive into the Ti Zhang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eva Mohr

University of Kansas

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge