Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tia Hirvonen is active.

Publication


Featured researches published by Tia Hirvonen.


Stem Cells | 2013

Cell Surface Structures Influence Lung Clearance Rate of Systemically Infused Mesenchymal Stromal Cells

Johanna Nystedt; Heidi Anderson; Jonne Tikkanen; Mika Pietilä; Tia Hirvonen; Reijo Takalo; Annamari Heiskanen; Tero Satomaa; Suvi Natunen; Siri Lehtonen; Tanja Hakkarainen; Matti Korhonen; Saara Laitinen; Leena Valmu; Petri Lehenkari

The promising clinical effects of mesenchymal stromal/stem cells (MSCs) rely especially on paracrine and nonimmunogenic mechanisms. Delivery routes are essential for the efficacy of cell therapy and systemic delivery by infusion is the obvious goal for many forms of MSC therapy. Lung adhesion of MSCs might, however, be a major obstacle yet to overcome. Current knowledge does not allow us to make sound conclusions whether MSC lung entrapment is harmful or beneficial, and thus we wanted to explore MSC lung adhesion in greater detail. We found a striking difference in the lung clearance rate of systemically infused MSCs derived from two different clinical sources, namely bone marrow (BM‐MSCs) and umbilical cord blood (UCB‐MSCs). The BM‐MSCs and UCB‐MSCs used in this study differed in cell size, but our results also indicated other mechanisms behind the lung adherence. A detailed analysis of the cell surface profiles revealed differences in the expression of relevant adhesion molecules. The UCB‐MSCs had higher expression levels of α4 integrin (CD49d, VLA‐4), α6 integrin (CD49f, VLA‐6), and the hepatocyte growth factor receptor (c‐Met) and a higher general fucosylation level. Strikingly, the level of CD49d and CD49f expression could be functionally linked with the lung clearance rate. Additionally, we saw a possible link between MSC lung adherence and higher fibronectin expression and we show that the expression of fibronectin increases with MSC culture confluence. Future studies should aim at developing methods of transiently modifying the cell surface structures in order to improve the delivery of therapeutic cells. STEM CELLS2013;31:317–326


Glycoconjugate Journal | 2009

Glycomics of bone marrow-derived mesenchymal stem cells can be used to evaluate their cellular differentiation stage

Annamari Heiskanen; Tia Hirvonen; Hanna Salo; Ulla Impola; Anne Olonen; Anita Laitinen; Sari Tiitinen; Suvi Natunen; Olli Aitio; Halina Miller-Podraza; Manfred Wuhrer; André M. Deelder; Jari Natunen; Jarmo Laine; Petri Lehenkari; Juhani Saarinen; Tero Satomaa; Leena Valmu

Human mesenchymal stem cells (MSCs) are adult multipotent progenitor cells. They hold an enormous therapeutic potential, but at the moment there is little information on the properties of MSCs, including their surface structures. In the present study, we analyzed the mesenchymal stem cell glycome by using mass spectrometric profiling as well as a panel of glycan binding proteins. Structural verifications were obtained by nuclear magnetic resonance spectroscopy, mass spectrometric fragmentation, and glycosidase digestions. The MSC glycome was compared to the glycome of corresponding osteogenically differentiated cells. More than one hundred glycan signals were detected in mesenchymal stem cells and osteoblasts differentiated from them. The glycan profiles of MSCs and osteoblasts were consistently different in biological replicates, indicating that stem cells and osteoblasts have characteristic glycosylation features. Glycosylation features associated with MSCs rather than differentiated cells included high-mannose type N-glycans, linear poly-N-acetyllactosamine chains and α2-3-sialylation. Mesenchymal stem cells expressed SSEA-4 and sialyl Lewis x epitopes. Characteristic glycosylation features that appeared in differentiated osteoblasts included abundant sulfate ester modifications. The results show that glycosylation analysis can be used to evaluate MSC differentiation state.


Journal of Leukocyte Biology | 2007

Acyl chain-dependent effect of lysophosphatidylcholine on human neutrophils

Pauli Ojala; Tia Hirvonen; Martin Hermansson; Pentti Somerharju; J. Parkkinen

Lysophosphatidylcholine (LPC) is the most abundant lysophospholipid in plasma and tissues, and its level increases in ischemia and inflammation. LPC induces various proinflammatory actions in leukocytes, endothelial cells, and smooth muscle cells, but its effects may vary, depending on the acyl chain. In the present study, we identified the molecular species of LPC in human plasma and studied their effects on human neutrophils. Unsaturated LPC species over a wide concentration range (5–200 μM) induced long‐lasting superoxide production in neutrophils. The response was preceded by a >10‐min lag time and lasted for 60–90 min. Superoxide production was prevented when albumin was added together with LPC at a molar ratio of 1:2 or higher, and significant inhibition was observed even when albumin was added 4–8 min after LPC. Saturation of albumin by fivefold molar excess of stearic acid reduced the inhibitory effect significantly. Saturated LPCs, particularly the most abundant 16:0 species, induced significantly less superoxide production than the unsaturated species and only at 5–10 μM concentrations. Saturated LPC species elicited a several‐fold higher increase in cytoplasmic calcium and at >20 μM, increased plasma membrane permeability. A mixture of LPCs mimicking the plasma LPC composition induced nearly similar superoxide production as the most active LPC18:1 alone. These results indicate remarkable acyl chain‐dependent differences in the cellular effects of LPC. Elevation of LPC level may increase inflammation through activation of neutrophil NADPH oxidase, particularly when the simultaneous increase of free fatty acids diminishes the ability of albumin to scavenge LPCs.


Journal of Molecular Cell Biology | 2011

Are globoseries glycosphingolipids SSEA-3 and -4 markers for stem cells derived from human umbilical cord blood?

Heli Suila; Virve Pitkänen; Tia Hirvonen; Annamari Heiskanen; Heidi Anderson; Anita Laitinen; Suvi Natunen; Halina Miller-Podraza; Tero Satomaa; Jari Natunen; Saara Laitinen; Leena Valmu

Umbilical cord blood (UCB) is an efficient and valuable source of hematopoietic stem cells (HSCs) for transplantation. In addition to HSCs it harbours low amounts of mesenchymal stem cells (MSCs). No single marker to identify cord blood-derived stem cells, or to indicate their multipotent phenotype, has been characterized so far. SSEA-3 and -4 are cell surface globoseries glycosphingolipid epitopes that are commonly used as markers for human embryonic stem cells, where SSEA-3 rapidly disappears when the cells start to differentiate. Lately SSEA-3 and -4 have also been observed in MSCs. As there is an ongoing discussion and variation of stem-cell markers between laboratories, we have now comprehensively characterized the expression of these epitopes in both the multipotent stem-cell types derived from UCB. We have performed complementary analysis using gene expression analysis, mass spectrometry and immunochemical methods, including both flow cytometry and immunofluoresence microscopy. SSEA-4, but not SSEA-3, was expressed on MSCs but absent from HSCs. Our findings indicate that SSEA-3 and/or -4 may not be optimal markers for multipotency in the case of stem cells derived from cord blood, as their expression may be altered by cell-culture conditions.


Stem Cells | 2009

Human CMP-N-acetylneuraminic acid hydroxylase is a novel stem cell marker linked to stem cell-specific mechanisms.

Johanna Nystedt; Heidi Anderson; Tia Hirvonen; Ulla Impola; Taina Jaatinen; Annamari Heiskanen; Maria Blomqvist; Tero Satomaa; Jari Natunen; Juhani Saarinen; Petri Lehenkari; Leena Valmu; Jarmo Laine

Human stem cells contain substantial amounts of the xenoantigen N‐glycolylneuraminic acid (Neu5Gc), although the levels of Neu5Gc are low or undetectable in human body fluids and most other human tissues. The lack of Neu5Gc in human tissues has been previously explained by the loss of hydroxylase activity of the human CMP‐N‐acetylneuraminic acid hydroxylase (CMAH) protein caused by a genetic error in the human Cmah gene. We thus wanted to investigate whether the human redundant Cmah gene could still function in stem cell‐specific processes. In this study, we show that CMAH gene expression is significantly upregulated in the adult stem cell populations studied, both of hematopoietic and mesenchymal origin, and identify CMAH as a novel stem cell marker. The CMAH content co‐occurs with higher levels of Neu5Gc within stem cells as measured by mass spectrometric profiling. It seems that despite being enzymatically inactive, human CMAH may upregulate the Neu5Gc content of cells by enhancing Neu5Gc uptake from exogenous sources. Furthermore, exposure to exogenous Neu5Gc caused rapid phosphorylation of β‐catenin in both CMAH overexpressing cells and bone marrow‐derived mesenchymal stem cells, thereby inactivating Wnt/β‐catenin signaling. The data demonstrate the first molecular evidence for xenoantigen Neu5Gc‐induced alteration of crucial stem cell‐specific signaling systems for the maintenance of self renewal. These results add further emphasis to the crucial need for completely xenofree culturing conditions for human stem cells. STEM CELLS 2010;28:258–267


Stem Cells and Development | 2012

The i Blood Group Antigen as a Marker for Umbilical Cord Blood-Derived Mesenchymal Stem Cells

Tia Hirvonen; Heli Suila; Annika Kotovuori; Ilja Ritamo; Annamari Heiskanen; Pertti Sistonen; Heidi Anderson; Tero Satomaa; Juhani Saarinen; Sari Tiitinen; Jarkko Räbinä; Saara Laitinen; Suvi Natunen; Leena Valmu

Multipotent mesenchymal stem cells (MSCs) offer great promise for future regenerative and anti-inflammatory therapies. However, there is a lack of methods to quickly and efficiently isolate, characterize, and ex vivo expand desired cell populations for therapeutic purposes. Single markers to identify cell populations have not been characterized; instead, all characterizations rely on panels of functional and phenotypical properties. Glycan epitopes can be used for identifying and isolating specific cell types from heterogeneous populations, on the basis of their cell-type specific expression and prominent cell surface localization. We have now studied in detail the cell surface expression of the blood group i epitope (linear poly-N-acetyllactosamine chain) in umbilical cord blood (UCB)-derived MSCs. We used flow cytometry and mass spectrometric glycan analysis and discovered that linear poly-N-acetyllactosamine structures are expressed in UCB-derived MSCs, but not in cells differentiated from them. We further verified the findings by mass spectrometric glycan analysis. Gene expression analysis indicated that the stem-cell specific expression of the i antigen is determined by β3-N-acetylglucosaminyltransferase 5. The i antigen is a ligand for the galectin family of soluble lectins. We found concomitant cell surface expression of galectin-3, which has been reported to mediate the immunosuppressive effects exerted by MSCs. The i antigen may serve as an endogenous ligand for this immunosuppressive agent in the MSC microenvironment. Based on these findings, we suggest that linear poly-N-acetyllactosamine could be used as a novel UCB-MSC marker either alone or within an array of MSC markers.


Scandinavian Journal of Immunology | 2014

Human umbilical cord blood-derived mesenchymal stromal cells display a novel interaction between P-selectin and galectin-1.

Heli Suila; Tia Hirvonen; A. Kotovuori; Ilja Ritamo; E. Kerkelä; Heidi Anderson; Suvi Natunen; Jarno Tuimala; Saara Laitinen; Johanna Nystedt; Jarkko Räbinä; Leena Valmu

Human multipotent mesenchymal stromal/stem cells (MSCs) have been shown to exert immunomodulatory properties that have great potential in therapies for various inflammatory and autoimmune disorders. However, intravenous delivery of these cells is followed by massive cell entrapment in the lungs and insufficient homing to target tissues or organs. In targeting to tissues, MSCs and other therapeutic cells employ similar mechanisms as leucocytes, including a cascade of rolling and adhesion steps mediated by selectins, integrins and their ligands. However, the mechanisms of MSCs homing are not well understood. We discovered that P‐selectin (CD62P) binds to umbilical cord blood (UCB)‐derived MSCs independently of the previously known sialyl Lewis x (sLex)‐containing ligands such as P‐selectin glycoprotein ligand‐1 (PSGL‐1, CD162). By biochemical assays, we identified galectin‐1 as a novel ligand for P‐selectin. Galectin‐1 has previously been shown to be a key mediator of the immunosuppressive effects of human MSCs. We conclude that this novel interaction is likely to play a major role in the immunomodulatory targeting of human UCB‐derived MSCs.


BioResearch Open Access | 2013

Production of a Recombinant Antibody Specific for i Blood Group Antigen, a Mesenchymal Stem Cell Marker

Tia Hirvonen; Heli Suila; Sari Tiitinen; Suvi Natunen; Marja-Leena Laukkanen; Annika Kotovuori; Mirka Reinman; Tero Satomaa; Kaija Alfthan; Saara Laitinen; Kristiina Takkinen; Jarkko Räbinä; Leena Valmu

Abstract Multipotent mesenchymal stem/stromal cells (MSCs) offer great promise for future regenerative and anti-inflammatory therapies. Panels of functional and phenotypical markers are currently used in characterization of different therapeutic stem cell populations from various sources. The i antigen (linear poly-N-acetyllactosamine) from the Ii blood group system has been suggested as a marker for MSCs derived from umbilical cord blood (UCB). However, there are currently no commercially available antibodies recognizing the i antigen. In the present study, we describe the use of antibody phage display technology to produce recombinant antibodies recognizing a structure from the surface of mesenchymal stem cells. We constructed IgM phage display libraries from the lymphocytes of a donor with an elevated serum anti-i titer. Antibody phage display technology is not dependent on immunization and thus allows the generation of antibodies against poorly immunogenic molecules, such as carbohydrates. Agglutination assays utilizing i antigen–positive red blood cells (RBCs) from UCB revealed six promising single-chain variable fragment (scFv) antibodies, three of which recognized epitopes from the surface of UCB-MSCs in flow cytometric assays. The amino acid sequence of the VH gene segment of B12.2 scFv was highly similar to the VH4.21 gene segment required to encode anti-i specificities. Further characterization of binding properties revealed that the binding of B12.2 hyperphage was inhibited by soluble linear lactosamine oligosaccharide. Based on these findings, we suggest that the B12.2 scFv we have generated is a prominent anti-i antibody that recognizes i antigen on the surface of both UCB-MSCs and RBCs. This binder can thus be utilized in UCB-MSC detection and isolation as well as in blood group serology.


BioResearch Open Access | 2014

Extracellular O-Linked N-Acetylglucosamine Is Enriched in Stem Cells Derived from Human Umbilical Cord Blood

Heli Suila; Tia Hirvonen; Ilja Ritamo; Suvi Natunen; Jarno Tuimala; Saara Laitinen; Heidi Anderson; Johanna Nystedt; Jarkko Räbinä; Leena Valmu

Abstract Stem cells have a unique ability to self-renew and differentiate into diverse cell types. Currently, stem cells from various sources are being explored as a promising new treatment for a variety of human diseases. A diverse set of functional and phenotypical markers are used in the characterization of specific therapeutic stem cell populations. The glycans on the stem cell surface respond rapidly to alterations in cellular state and signaling and are therefore ideal for identifying even minor changes in cell populations. Many stem cell markers are based on cell surface glycan epitopes including the widely used markers SSEA-3, SSEA-4, Tra 1-60, and Tra 1-81. We have now discovered by mRNA analysis that a novel glycosyltranferase, epidermal growth factor (EGF) domain-specific O-linked GlcNAc transferase (EOGT), is highly expressed in stem cells. EOGT is responsible for adding O-linked N-acetylglucosamine (O-GlcNAc) to folded EGF domains on extracellular proteins, such as those on the Notch receptors. We were able to show by immunological assays that human umbilical cord blood–derived mesenchymal stromal cells display O-GlcNAc, the product of EOGT, and that O-GlcNAc is further elongated with galactose to form O-linked N-acetyllactosamine. We suggest that these novel glycans are involved in the fine tuning of Notch receptor signaling pathways in stem cells.


Biochemistry | 2006

Identification of alpha-1 acid glycoprotein as a lysophospholipid binding protein: a complementary role to albumin in the scavenging of lysophosphatidylcholine.

Pauli J. Ojala; Martin Hermansson; Martti Tolvanen; Kirsi Polvinen; Tia Hirvonen; Ulla Impola; Matti Jauhiainen; Pentti Somerharju; Jaakko Parkkinen

Collaboration


Dive into the Tia Hirvonen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge