Tiago Faria
Instituto Politécnico Nacional
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Tiago Faria.
Journal of Occupational and Environmental Hygiene | 2017
Carla Viegas; Tiago Faria; Liliana Aranha Caetano; Elisabete Carolino; Anita Quintal Gomes; Susana Viegas
ABSTRACT The genus Aspergillus is one of the most prevalent regarding fungi in several highly contaminated occupational environments. The goal of the current study was to assess the prevalence of Aspergillus spp. in different settings, focusing on those where a higher load of fungal contamination is expected according to the European Agency for Safety and Health at Work. A specific protocol to ensure a more accurate assessment of the exposure to Aspergillus spp. is proposed aimed at allowing a detailed risk characterization and management. Two wastewater treatment plants, one wastewater elevation plant, four waste treatment plants, three cork industries, five slaughter houses, four feed industries, one poultry pavilion, and two swineries, all located in the outskirts of Lisbon, were assessed. In total, 125 air samples and 125 surface samples were collected and analysed by culture-based methods. Real-time polymerase chain reaction was performed to detect fungal presence in 100 samples, targeting the Aspergillus sections Circumdati, Flavi, and Fumigati. The highest prevalence of Aspergillus spp. was found in wastewater treatment plants (69.3%; 31.1%), waste treatment plants (34.8%; 73.6%), and poultry feed industry (6.3%; 26.1%), in air and surfaces, respectively. Aspergillus spp. was also prevalent in cork industry (0.9%; 23.4%), slaughter houses (1.6%; 17.7%), and swineries (7.4%; 9.5%), in air and surfaces, respectively. The Aspergillus sections more prevalent in the air and surfaces of all the assessed settings were the Nigri section (47.46%; 44.71%, respectively), followed by Fumigati (22.28%; 27.97%, respectively) and Flavi (10.78%; 11.45%, respectively) sections. Aspergillus section Fumigati was successfully amplified by qPCR in 18 sampling sites where the presence of this fungal species had not been identified by conventional methods. It should be highlighted that the occupational exposure burden is due not only to the Aspergillus load, but also to the toxigenic potential of this genus. Based on our results, a protocol relied in the application of conventional and molecular methods in parallel is herein suggested aimed at allowing a better risk characterization and management.
Medycyna Pracy | 2016
Carla Viegas; Tiago Faria; Elisabete Carolino; Raquel Sabino; Anita Quintal Gomes; Susana Viegas
BACKGROUND Very few studies regarding fungal and particulate matter (PM) exposure in feed industry have been reported, although such contaminants are likely to be a significant contributing factor to several symptoms reported among workers. The purpose of this study has been to characterize fungal and dust exposure in one Portuguese feed industry. MATERIAL AND METHODS Air and surface samples were collected and subject to further macro- and microscopic observations. In addition we collected other air samples in order to perform real-time quantitative polymerase chain reaction (PCR) amplification of genes from Aspergillus fumigatus and Aspergillus flavus complexes as well as Stachybotrys chartarum. Additionally, two exposure metrics were considered - particle mass concentration (PMC), measured in 5 different sizes (PM0.5, PM1, PM2.5, PM5, PM10), and particle number concentration (PNC) based on results given in 6 different sizes in terms of diameter (0.3 μm, 0.5 μm, 1 μm, 2.5 μm, 5 μm and 10 μm). RESULTS Species from the Aspergillus fumigatus complex were the most abundant in air (46.6%) and in surfaces, Penicillium genus was the most frequently found (32%). The only DNA was detected from A. fumigatus complex. The most prevalent in dust samples were smaller particles which may reach deep into the respiratory system and trigger not only local effects but also the systemic ones. CONCLUSIONS Future research work must be developed aiming at assessing the real health effects of these co-exposures. Med Pr 2016;67(2):143-154.
Toxics | 2017
Susana Viegas; Liliana Aranha Caetano; Merja Korkalainen; Tiago Faria; Cátia Pacífico; Elisabete Carolino; Anita Quintal Gomes; Carla Viegas
Organic dust and related microbial exposures are the main inducers of several respiratory symptoms. Occupational exposure to organic dust is very common and has been reported in diverse settings. In vitro tests using relevant cell cultures can be very useful for characterizing the toxicity of complex mixtures present in the air of occupational environments such as organic dust. In this study, the cell viability and the inflammatory response, as measured by the production of pro-inflammatory cytokines tumor necrosis factor-α (TNFα) and interleukin-1 β (IL-1β), were determined in human macrophages derived from THP-1 monocytic cells. These cells were exposed to air samples from five occupational settings known to possess high levels of contamination of organic dust: poultry and swine feed industries, waste sorting, poultry production and slaughterhouses. Additionally, fungi and particle contamination of those settings was studied to better characterize the organic dust composition. All air samples collected from the assessed workplaces caused both cytotoxic and pro-inflammatory effects. The highest responses were observed in the feed industry, particularly in swine feed production. This study emphasizes the importance of measuring the organic dust/mixture effects in occupational settings and suggests that differences in the organic dust content may result in differences in health effects for exposed workers.
Journal of Toxicology and Environmental Health | 2014
Carla Viegas; Tiago Faria; Anita Quintal Gomes; Raquel Sabino; A. Seco; Susana Viegas
The presence of filamentous fungi was detected in wastewater and air collected at wastewater treatment plants (WWTP) from several European countries. The aim of the present study was to assess fungal contamination in two WWTP operating in Lisbon. In addition, particulate matter (PM) contamination data was analyzed. To apply conventional methods, air samples from the two plants were collected through impaction using an air sampler with a velocity air rate of 140 L/min. Surfaces samples were collected by swabbing the surfaces of the same indoor sites. All collected samples were incubated at 27°C for 5 to 7 d. After lab processing and incubation of collected samples, quantitative and qualitative results were obtained with identification of the isolated fungal species. For molecular methods, air samples of 250 L were also collected using the impinger method at 300 L/min airflow rate. Samples were collected into 10 ml sterile phosphate-buffered saline with 0.05% Triton X-100, and the collection liquid was subsequently used for DNA extraction. Molecular identification of Aspergillus fumigatus and Stachybotrys chartarum was achieved by real-time polymerase chain reaction (RT-PCR) using the Rotor-Gene 6000 qPCR Detection System (Corbett). Assessment of PM was also conducted with portable direct-reading equipment (Lighthouse, model 3016 IAQ). Particles concentration measurement was performed at five different sizes: PM0.5, PM1, PM2.5, PM5, and PM10. Sixteen different fungal species were detected in indoor air in a total of 5400 isolates in both plants. Penicillium sp. was the most frequently isolated fungal genus (58.9%), followed by Aspergillus sp. (21.2%) and Acremonium sp. (8.2%), in the total underground area. In a partially underground plant, Penicillium sp. (39.5%) was also the most frequently isolated, also followed by Aspergillus sp. (38.7%) and Acremonium sp. (9.7%). Using RT-PCR, only A. fumigatus was detected in air samples collected, and only from partial underground plant. Stachybotrys chartarum was not detected in any of the samples analyzed. The distribution of particle sizes showed the same tendency in both plants; however, the partially underground plant presented higher levels of contamination, except for PM2.5. Fungal contamination assessment is crucial to evaluating the potential health risks to exposed workers in these settings. In order to achieve an evaluation of potential health risks to exposed workers, it is essential to combine conventional and molecular methods for fungal detection. Protective measures to minimize worker exposure to fungi need to be adopted since wastewater is the predominant internal fungal source in this setting.
Journal of Toxicology and Environmental Health | 2017
Carla Viegas; Cátia Pacífico; Tiago Faria; Ana Cebola Oliveira; Liliana Aranha Caetano; Elisabete Carolino; Anita Quintal Gomes; Susana Viegas
ABSTRACT Studies on the microbiology of coffee cherries and beans have shown that the predominant toxigenic fungal genera (Aspergillus and Penicillium) are natural coffee contaminants. The aim of this study was to investigate the distribution of fungi in Coffea arabica L. (Arabica coffee) and Coffea canephora L. var. robusta (Robusta coffee) green coffee samples obtained from different sources at the pre-roasting stage. Twenty-eight green coffee samples from different countries of origin (Brazil, Timor, Honduras, Angola, Vietnam, Costa Rica, Colombia, Guatemala, Nicaragua, India, and Uganda) were evaluated. The fungal load in the contaminated samples ranged from 0 to 12330 colony forming units (CFU)/g, of which approximately 67% presented contamination levels below 1500 CFU/g, while 11% exhibited intermediate contamination levels between 1500 and 3000 CFU/g. Contamination levels higher than 3000 CFU/g were found in 22% of contaminated coffee samples. Fifteen different fungi were isolated by culture-based methods and Aspergillus species belonging to different sections (complexes). The predominant Aspergillus section detected was Nigri (39%), followed by Aspergillus section Circumdati (29%). Molecular analysis detected the presence of Aspergillus sections Fumigati and Circumdati. The% coffee samples where Aspergillus species were identified by culture-based methods were 96%. Data demonstrated that green coffee beans samples were contaminated with toxigenic fungal species. Since mycotoxins may be resistant to the roasting process, this suggests possible exposure to mycotoxins through consumption of coffee. Further studies need to be conducted to provide information on critical points of coffee processing, such that fungal contamination may be reduced or eliminated and thus exposure to fungi and mycotoxins through coffee handling and consumption be prevented.
International Journal of Environmental Research and Public Health | 2016
Carla Viegas; Tiago Faria; Mateus dos Santos; Elisabete Carolino; Raquel Sabino; Anita Quintal Gomes; Susana Viegas
In slaughterhouses, the biological risk is present not only from the direct or indirect contact with animal matter, but also from the exposure to bioaerosols. Fungal contamination was already reported from the floors and walls of slaughterhouses. This study intends to assess fungal contamination by cultural and molecular methods in poultry, swine/bovine and large animal slaughterhouses. Air samples were collected through an impaction method, while surface samples were collected by the swabbing method and subjected to further macro- and micro-scopic observations. In addition, we collected air samples using the impinger method in order to perform real-time quantitative PCR (qPCR) amplification of genes from specific fungal species, namely A. flavus, A. fumigatus and A. ochraceus complexes. Poultry and swine/bovine slaughterhouses presented each two sampling sites that surpass the guideline of 150 CFU/m3. Scopulariopsis candida was the most frequently isolated (59.5%) in poultry slaughterhouse air; Cladosporium sp. (45.7%) in the swine/bovine slaughterhouse; and Penicillium sp. (80.8%) in the large animal slaughterhouse. Molecular tools successfully amplified DNA from the A. fumigatus complex in six sampling sites where the presence of this fungal species was not identified by conventional methods. This study besides suggesting the indicators that are representative of harmful fungal contamination, also indicates a strategy as a protocol to ensure a proper characterization of fungal occupational exposure.
International Journal of Environment and Waste Management | 2015
Carla Viegas; Anita Quintal Gomes; Tiago Faria; Raquel Sabino
Aspergillus fumigatus is one of the major ubiquitous saprophytic fungi and it is considered one of the fungal species with higher clinical relevance. This study aimed at characterising the prevalence of A. fumigatus complex in one waste-sorting plant and also in one incineration plant. Conventional and molecular methodologies were applied in order to detect its presence. Aspergillus fumigatus complex was the second most frequently found in the air from the waste-sorting plant (16.0%) and from the incineration plant (18.0%). Regarding surfaces, it ranked the third species most frequently found in the waste-sorting plant (13.8%) and the second in the incineration plant (22.3%). In the waste-sorting plant, it was possible to amplify by qPCR DNA from the A. fumigatus complex in all culture-positive sampling sites plus one other sampling site that was negative by culture analysis. Considering the observed fungal load, it is recommended to apply preventive and protective measures in order to avoid or minimise workers exposure.
Healthcare | 2017
Carla Viegas; Tiago Faria; Cátia Pacífico; Mateus dos Santos; Ana Monteiro; Carla Costa Lança; Elisabete Carolino; Susana Viegas; Sandra Cabo Verde
The aim of this work was to assess the microbiota (fungi and bacteria) and particulate matter in optical shops, contributing to a specific protocol to ensure a proper assessment. Air samples were collected through an impaction method. Surface and equipment swab samples were also collected side-by-side. Measurements of particulate matter were performed using portable direct-reading equipment. A walkthrough survey and checklist was also applied in each shop. Regarding air sampling, eight of the 13 shops analysed were above the legal requirement and 10 from the 26 surfaces samples were overloaded. In three out of the 13 shops fungal contamination in the analysed equipment was not detected. The bacteria air load was above the threshold in one of the 13 analysed shops. However, bacterial counts were detected in all sampled equipment. Fungi and bacteria air load suggested to be influencing all of the other surface and equipment samples. These results reinforce the need to improve air quality, not only to comply with the legal requirements, but also to ensure proper hygienic conditions. Public health intervention is needed to assure the quality and safety of the rooms and equipment in optical shops that perform health interventions in patients.
microbiology 2017, Vol. 3, Pages 960-975 | 2017
Liliana Aranha Caetano; Tiago Faria; Ana Crespo Batista; Susana Viegas; Carla Viegas
Occupational exposure to bioaerosols resulting from handling of flour dust and raw materials in bakeries is associated with health problems. The emergence of azole-resistant fungal species in the environment is thought to be related with the use of azole fungicides in cereal crops and prevention of postharvest spoilage. As raw materials used in bakeries are commonly exposed to azoles, we investigated the mycobiota and azole-resistant fungi prevalence in this occupational environment. Ten Portuguese bakeries were assessed through electrostatic dust cloth (EDC, n = 27), settled dust (n = 7), and raw material (n = 26) samples. Samples were inoculated in malt extract agar (2%) (MEA) with chloramphenicol (0.05 g/L) and in dichloran glycerol (DG18), and onto Saboraud screening media supplemented with 4 mg/L itraconazole, 1 mg/L voriconazole, or 0.5 mg/L posaconazole, and incubated for 3–5 days at 27 °C. Except for one out of the ten analyzed bakeries, Cladosporium sp., Penicillium sp., and Aspergillus sp. were the most prevalent fungi identified. Aspergillus sp. and Mucorales order were identified in raw materials with both media, whereas Penicillium sp. was identified in DG18 only. Azole-resistant species were identified in the environment (EDC) and, to a lower extent, in raw materials, including Aspergillus sp. and Mucorales. The presence of azole-resistant fungal species in bakeries represents an occupational risk for workers. This study proposes complementary sampling methods for the evaluation of occupational exposure to mycobiota, and highlights the importance of studying the prevalence of azole-resistant strains in specific occupational environments.
Toxics | 2017
Carla Viegas; Tiago Faria; Ana Monteiro; Liliana Aranha Caetano; Elisabete Carolino; Anita Quintal Gomes; Susana Viegas
Swine production has been associated with health risks and workers’ symptoms. In Portugal, as in other countries, large-scale swine production involves several activities in the swine environment that require direct intervention, increasing workers’ exposure to organic dust. This study describes an updated protocol for the assessment of occupational exposure to organic dust, to unveil an accurate scenario regarding occupational and environmental risks for workers’ health. The particle size distribution was characterized regarding mass concentration in five different size ranges (PM0.5, PM1, PM2.5, PM5, PM10). Bioburden was assessed, by both active and passive sampling methods, in air, on surfaces, floor covering and feed samples, and analyzed through culture based-methods and qPCR. Smaller size range particles exhibited the highest counts, with indoor particles showing higher particle counts and mass concentration than outdoor particles. The limit values suggested for total bacteria load were surpassed in 35.7% (10 out of 28) of samples and for fungi in 65.5% (19 out of 29) of samples. Among Aspergillus genera, section Circumdati was the most prevalent (55%) on malt extract agar (MEA) and Versicolores the most identified (50%) on dichloran glycerol (DG18). The results document a wide characterization of occupational exposure to organic dust on swine farms, being useful for policies and stakeholders to act to improve workers’ safety. The methods of sampling and analysis employed were the most suitable considering the purpose of the study and should be adopted as a protocol to be followed in future exposure assessments in this occupational environment.