Tiancong Qi
Tsinghua University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Tiancong Qi.
The Plant Cell | 2009
Jianbin Yan; Chi Zhang; Min Gu; Zhiyan Bai; Weiguo Zhang; Tiancong Qi; Zhiwei Cheng; Wen Peng; Haibin Luo; Fajun Nan; Zhao Wang; Daoxin Xie
Jasmonates play a number of diverse roles in plant defense and development. CORONATINE INSENSITIVE1 (COI1), an F-box protein essential for all the jasmonate responses, interacts with multiple proteins to form the SCFCOI1 E3 ubiquitin ligase complex and recruits jasmonate ZIM-domain (JAZ) proteins for degradation by the 26S proteasome. To determine which protein directly binds to jasmonoyl-isoleucine (JA-Ile)/coronatine (COR) and serves as a receptor for jasmonate, we built a high-quality structural model of COI1 and performed molecular modeling of COI1–jasmonate interactions. Our results imply that COI1 has the structural traits for binding JA-Ile or COR. The direct binding of these molecules with COI1 was further examined using a combination of molecular and biochemical approaches. First, we used the immobilized jasmonate approach to show that the COI1 protein in crude leaf extracts can bind to the jasmonate moiety of JA-Ile. Second, we employed surface plasmon resonance technology with purified COI1 and JAZ1 protein to reveal the interaction among COI1, JA-Ile, and JAZ1. Finally, we used the photoaffinity labeling technology to show the direct binding of COR with purified insect-expressed COI1. Taken together, these results demonstrate that COI1 directly binds to JA-Ile and COR and serves as a receptor for jasmonate.
The Plant Cell | 2011
Tiancong Qi; Susheng Song; Qingcuo Ren; Dewei Wu; Huang Huang; Yan Chen; Meng Fan; Wen Peng; Chunmei Ren; Daoxin Xie
This work examines the molecular mechanism of jasmonate regulation of anthocyanin biosynthesis and trichome initiation. It identifies three bHLH transcription factors and two MYB transcription factors as new targets of JAZ proteins, showing that JAZ proteins attenuate the transcriptional function of WD-repeat/bHLH/MYB complexes to regulate anthocyanin accumulation and trichome. Jasmonates (JAs) mediate plant responses to insect attack, wounding, pathogen infection, stress, and UV damage and regulate plant fertility, anthocyanin accumulation, trichome formation, and many other plant developmental processes. Arabidopsis thaliana Jasmonate ZIM-domain (JAZ) proteins, substrates of the CORONATINE INSENSITIVE1 (COI1)–based SCFCOI1 complex, negatively regulate these plant responses. Little is known about the molecular mechanism for JA regulation of anthocyanin accumulation and trichome initiation. In this study, we revealed that JAZ proteins interact with bHLH (Transparent Testa8, Glabra3 [GL3], and Enhancer of Glabra3 [EGL3]) and R2R3 MYB transcription factors (MYB75 and Glabra1), essential components of WD-repeat/bHLH/MYB transcriptional complexes, to repress JA-regulated anthocyanin accumulation and trichome initiation. Genetic and physiological evidence showed that JA regulates WD-repeat/bHLH/MYB complex-mediated anthocyanin accumulation and trichome initiation in a COI1-dependent manner. Overexpression of the MYB transcription factor MYB75 and bHLH factors (GL3 and EGL3) restored anthocyanin accumulation and trichome initiation in the coi1 mutant, respectively. We speculate that the JA-induced degradation of JAZ proteins abolishes the interactions of JAZ proteins with bHLH and MYB factors, allowing the transcriptional function of WD-repeat/bHLH/MYB complexes, which subsequently activate respective downstream signal cascades to modulate anthocyanin accumulation and trichome initiation.
The Plant Cell | 2011
Susheng Song; Tiancong Qi; Huang Huang; Qingcuo Ren; Dewei Wu; Changqing Chang; Wen Peng; Yule Liu; Jinrong Peng; Daoxin Xie
Jasmonate is essential for diverse biological processes, including male fertility and plant defense in Arabidopsis. This work shows that the R2R3-MYB transcription factors MYB21 and MYB24 function as direct targets of JAZ proteins to mediate jasmonate-regulated stamen development. The Arabidopsis thaliana F-box protein CORONATINE INSENSITIVE1 (COI1) perceives jasmonate (JA) signals and subsequently targets the Jasmonate-ZIM domain proteins (JAZs) for degradation by the SCFCOI1-26S proteasome pathway to mediate various jasmonate-regulated processes, including fertility, root growth, anthocyanin accumulation, senescence, and defense. In this study, we screened JAZ-interacting proteins from an Arabidopsis cDNA library in the yeast two-hybrid system. MYB21 and MYB24, two R2R3-MYB transcription factors, were found to interact with JAZ1, JAZ8, and JAZ11 in yeast and in planta. Genetic and physiological experiments showed that the myb21 myb24 double mutant exhibited defects specifically in pollen maturation, anther dehiscence, and filament elongation leading to male sterility. Transgenic expression of MYB21 in the coi1-1 mutant was able to rescue male fertility partially but unable to recover JA-regulated root growth inhibition, anthocyanin accumulation, and plant defense. These results demonstrate that the R2R3-MYB transcription factors MYB21 and MYB24 function as direct targets of JAZs to regulate male fertility specifically. We speculate that JAZs interact with MYB21 and MYB24 to attenuate their transcriptional function; upon perception of JA signal, COI1 recruits JAZs to the SCFCOI1 complex for ubiquitination and degradation through the 26S proteasome; MYB21 and MYB24 are then released to activate expression of various genes essential for JA-regulated anther development and filament elongation.
Molecular Plant | 2011
Zhiwei Cheng; Li Sun; Tiancong Qi; Bosen Zhang; Wen Peng; Yule Liu; Daoxin Xie
The Arabidopsis Jasmonate ZIM-domain proteins (JAZs) act as substrates of SCF(COI1) complex to repress their downstream targets, which are essential for JA-regulated plant development and defense. The bHLH transcription factor MYC2 was found to interact with JAZs and mediate JA responses including JA-inhibitory root growth. Here, we identified another bHLH transcription factor MYC3 which directly interacted with JAZs by virtue of its N-terminal region to regulate JA responses. The transgenic plants with overexpression of MYC3 exhibited hypersensitivity in JA-inhibitory root elongation and seedling development. The JAZ-interacting pattern and the JA-induced expression pattern of MYC3 were distinguishable from those of MYC2. We speculate that MYC3 and MYC2 may have redundant but also distinguishable functions in regulation of JA responses.
The Plant Cell | 2014
Susheng Song; Huang Huang; Hua Gao; Jiaojiao Wang; Dewei Wu; Xili Liu; Shuhua Yang; Qingzhe Zhai; Chuanyou Li; Tiancong Qi; Daoxin Xie
The authors reveal a mechanism underlying jasmonate (JA) and ethylene (ET) antagonism: Interaction between the JA-activated transcription factor MYC2 and the ET-stabilized transcription factor EIN3, reciprocally repressing their transcriptional activity, modulates the antagonistic actions of JA and ET in regulating apical hook curvature, wound-responsive gene expression, and defense against insect attack. Plants have evolved sophisticated mechanisms for integration of endogenous and exogenous signals to adapt to the changing environment. Both the phytohormones jasmonate (JA) and ethylene (ET) regulate plant growth, development, and defense. In addition to synergistic regulation of root hair development and resistance to necrotrophic fungi, JA and ET act antagonistically to regulate gene expression, apical hook curvature, and plant defense against insect attack. However, the molecular mechanism for such antagonism between JA and ET signaling remains unclear. Here, we demonstrate that interaction between the JA-activated transcription factor MYC2 and the ET-stabilized transcription factor ETHYLENE-INSENSITIVE3 (EIN3) modulates JA and ET signaling antagonism in Arabidopsis thaliana. MYC2 interacts with EIN3 to attenuate the transcriptional activity of EIN3 and repress ET-enhanced apical hook curvature. Conversely, EIN3 interacts with and represses MYC2 to inhibit JA-induced expression of wound-responsive genes and herbivory-inducible genes and to attenuate JA-regulated plant defense against generalist herbivores. Coordinated regulation of plant responses in both antagonistic and synergistic manners would help plants adapt to fluctuating environments.
PLOS Genetics | 2013
Susheng Song; Tiancong Qi; Meng Fan; Xing Zhang; Hua Gao; Huang Huang; Dewei Wu; Hongwei Guo; Daoxin Xie
Plants have evolved sophisticated systems for adaptation to their natural habitat. In response to developmental and environmental cues, plants produce and perceive jasmonate (JA) signals, which induce degradation of JASMONATE-ZIM-Domain (JAZ) proteins and derepress the JAZ-repressed transcription factors to regulate diverse aspects of defense responses and developmental processes. Here, we identified the bHLH subgroup IIId transcription factors (bHLH3, bHLH13, bHLH14 and bHLH17) as novel targets of JAZs. These bHLH subgroup IIId transcription factors act as transcription repressors and function redundantly to negatively regulate JA responses. The quadruple mutant bhlh3 bhlh13 bhlh14 bhlh17 showed severe sensitivity to JA-inhibited root growth and JA-induced anthocyanin accumulation, and exhibited obvious increase in JA-regulated plant defense against pathogen infection and insect attack. Transgenic plants overexpressing bHLH13 or bHLH17 displayed reduced JA responses. Furthermore, these bHLH factors functioned as transcription repressors to antagonize the transcription activators, such as MYC2 and the WD-repeat/bHLH/MYB complex, through binding to their target sequences. Coordinated regulation of JA responses by transcription activators and repressors would benefit plants by allowing fine regulation of defense and development, and survival in their frequently changing environment.
The Plant Cell | 2014
Tiancong Qi; Huang Huang; Dewei Wu; Jianbin Yan; Yijun Qi; Susheng Song; Daoxin Xie
GA and JA regulate diverse aspects of plant growth, development, and defense. This work reveals a mechanism for GA and JA signaling synergy and identifies a signaling complex for the GA pathway: DELLAs and JAZs interact with and repress the WD-repeat/bHLH/MYB complex to mediate the synergistic action between GA and JA signaling in regulating trichome development. Integration of diverse environmental and endogenous signals to coordinately regulate growth, development, and defense is essential for plants to survive in their natural habitat. The hormonal signals gibberellin (GA) and jasmonate (JA) antagonistically and synergistically regulate diverse aspects of plant growth, development, and defense. GA and JA synergistically induce initiation of trichomes, which assist seed dispersal and act as barriers to protect plants against insect attack, pathogen infection, excessive water loss, and UV irradiation. However, the molecular mechanism underlying such synergism between GA and JA signaling remains unclear. In this study, we revealed a mechanism for GA and JA signaling synergy and identified a signaling complex of the GA pathway in regulation of trichome initiation. Molecular, biochemical, and genetic evidence showed that the WD-repeat/bHLH/MYB complex acts as a direct target of DELLAs in the GA pathway and that both DELLAs and JAZs interacted with the WD-repeat/bHLH/MYB complex to mediate synergism between GA and JA signaling in regulating trichome development. GA and JA induce degradation of DELLAs and JASMONATE ZIM-domain proteins to coordinately activate the WD-repeat/bHLH/MYB complex and synergistically and mutually dependently induce trichome initiation. This study provides deep insights into the molecular mechanisms for integration of different hormonal signals to synergistically regulate plant development.
Current Opinion in Plant Biology | 2014
Susheng Song; Tiancong Qi; Claus Wasternack; Daoxin Xie
The phytohormone jasmonate (JA) plays essential roles in plant growth, development and defense. In response to the JA signal, the CORONATINE INSENSITIVE 1 (COI1)-based SCF complexes recruit JASMONATE ZIM-domain (JAZ) repressors for ubiquitination and degradation, and subsequently regulate their downstream signaling components essential for various JA responses. Tremendous progress has been made in understanding the JA signaling pathway and its crosstalk with other phytohormone pathways during the past two decades. Recent studies have revealed that a variety of positive and negative regulators act as targets of JAZs to control distinctive JA responses, and that JAZs and these regulators function as crucial interfaces to mediate synergy and antagonism between JA and other phytohormones. Owing to different regulatory players in JA perception and JA signaling, a fine-tuning of JA-dependent processes in plant growth, development and defense is achieved. In this review, we will summarize the latest progresses in JA signaling and its crosstalk with gibberellin and ethylene.
The Plant Cell | 2015
Tiancong Qi; Huang Huang; Susheng Song; Daoxin Xie
MYC5 is a target of JAZs and functions redundantly with MYC2, MYC3, and MYC4 to regulate stamen development and seed production via interactions with the MYB transcription factors MYB21 and MYB24. Stamens are the plant male reproductive organs essential for plant fertility. Proper development of stamens is modulated by environmental cues and endogenous hormone signals. Deficiencies in biosynthesis or perception of the phytohormone jasmonate (JA) attenuate stamen development, disrupt male fertility, and abolish seed production in Arabidopsis thaliana. This study revealed that JA-mediated stamen development and seed production are regulated by a bHLH-MYB complex. The IIIe basic helix-loop-helix (bHLH) transcription factor MYC5 acts as a target of JAZ repressors to function redundantly with other IIIe bHLH factors such as MYC2, MYC3, and MYC4 in the regulation of stamen development and seed production. The myc2 myc3 myc4 myc5 quadruple mutant exhibits obvious defects in stamen development and significant reduction in seed production. Moreover, these IIIe bHLH factors interact with the MYB transcription factors MYB21 and MYB24 to form a bHLH-MYB transcription complex and cooperatively regulate stamen development. We speculate that the JAZ proteins repress the bHLH-MYB complex to suppress stamen development and seed production, while JA induces JAZ degradation and releases the bHLH-MYB complex to subsequently activate the expression of downstream genes essential for stamen development and seed production.
Molecular Plant | 2013
Susheng Song; Tiancong Qi; Huang Huang; Daoxin Xie
Proper stamen development is essential for plants to achieve their life cycles. Defects in stamen development will cause male sterility. A vast array of research efforts have been made to understand stamen developmental processes and regulatory mechanisms over the past decades. It is so far reported that phytohormones, including jasmonate, auxin, gibberellin, brassinosteroid, and cytokinin, play essential roles in regulation of stamen development. This review will briefly summarize the molecular basis for coordinated regulation of stamen development by jasmonate, auxin, and gibberellin in Arabidopsis.