Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tianhu Chen is active.

Publication


Featured researches published by Tianhu Chen.


Journal of Hazardous Materials | 2009

Montmorillonite-supported magnetite nanoparticles for the removal of hexavalent chromium [Cr(VI)] from aqueous solutions.

Peng Yuan; Mingde Fan; Dan Yang; Hongping He; Dong Liu; Aihua Yuan; Jianxi Zhu; Tianhu Chen

Montmorillonite-supported magnetite nanoparticles were prepared by co-precipitation and hydrosol method. The obtained materials were characterized by X-ray diffraction, nitrogen adsorption, elemental analysis, differential scanning calorimetry, transmission electron microscopy and X-ray photoelectron spectroscopy. The average sizes of the magnetite nanoparticles without and with montmorillonite support are around 25 and 15 nm, respectively. The montmorillonite-supported magnetite nanoparticles exist on the surface or inside the interparticle pores of clays, with better dispersing and less coaggregation than the ones without montmorillonite support. Batch tests were carried out to investigate the removal mechanism of hexavalent chromium [Cr(VI)] by these synthesized magnetite nanoparticles. The Cr(VI) uptake was mainly governed by a physico-chemical process, which included an electrostatic attraction followed by a redox process in which Cr(VI) was reduced into trivalent chromium. The adsorption of Cr(VI) was highly pH-dependent and the kinetics of the adsorption followed the Pseudo-second-order model. The adsorption data of unsupported and clay-supported magnetite nanoparticles fit well with the Langmuir and Freundlich isotherm equations. The montmorillonite-supported magnetite nanoparticles showed a much better adsorption capacity per unit mass of magnetite (15.3mg/g) than unsupported magnetite (10.6 mg/g), and were more thermally stable than their unsupported counterparts. These fundamental results demonstrate that the montmorillonite-supported magnetite nanoparticles are readily prepared, enabling promising applications for the removal of Cr(VI) from aqueous solution.


Journal of Colloid and Interface Science | 2008

A combined study by XRD, FTIR, TG and HRTEM on the structure of delaminated Fe-intercalated/pillared clay

Peng Yuan; Faïza Annabi-Bergaya; Qi Tao; Mingde Fan; Zongwen Liu; Jianxi Zhu; Hongping He; Tianhu Chen

Fe-PILC samples were synthesized by the reaction between Na(+)- and/or Ca(2+)-montmorillonite (Mt) and base-hydrolyzed solutions of Fe(III) nitrate. Different from the known usual microporous pillared structure, a meso-microporous delaminated structure containing intercalated or pillared fragments was found in the respective resulting Fe-intercalated or -pillared clays. XRD patterns of Na(+)-Mt-based Fe-intercalated/pillared clays show one large d-spacing above 6.4 nm corresponding to the mesoporous delaminated part, whereas another d-spacing of ca. 1.5 nm was indicative of the microporous pillared part. Fe-intercalated/pillared clays based on Ca(2+)-Mt lead to similar results, but with a d-spacing less than 6 nm and a second low intense d-spacing less than 1.5 nm. In the delaminated Fe-intercalated clays, NO(-)(3) anions were retained even after thorough washing process. They play as counterions to neutralize the positive-charged iron aggregates in the delaminated structure, and can be exchanged by heteropolyanions as [PW(12)O(40)](3-). The delaminated Fe-pillared clays show good thermal stability at 500 degrees C and exhibit at this temperature dramatically higher specific surface area and porosity than the starting montmorillonites. However, calcination at a higher temperature leads to the formation of nanocrystalline hematite. Air-drying after ethanol extraction (EAD) method has an advantage over air-drying (AD) method in preserving the delaminated structure.


Chemosphere | 2014

An overview of the role of goethite surfaces in the environment.

Haibo Liu; Tianhu Chen; Ray L. Frost

Goethite, one of the most thermodynamically stable iron oxides, has been extensively researched especially the structure (including surface structure), the adsorption capacity to anions, organic/organic acid (especially for the soil organic carbon) and cations in the natural environment and its potential application in environmental protection. For example, the adsorption of heavy metals by goethite can decrease the concentration of heavy metals in aqueous solution and immobilize; the adsorption to soil organic carbon can decrease the release of carbon and fix carbon. In this present overview, the possible physicochemical properties of the goethite surface contributing to the strong affinity of goethite to nutrients and contaminants in natural environment are reported. Moreover, these chemicals adsorbed by goethite were also summarized and the suggested adsorption mechanism for these adsorbates was elucidated, which will help us understand the role of goethite in natural environment and provide some information about goethite as an absorbent. In addition, the feasibility of goethite used as catalyst carrier and the precursor of NZVI was proposed for removal of environmental pollution.


Journal of Colloid and Interface Science | 2012

Adsorption of roxarsone from aqueous solution by multi-walled carbon nanotubes

Jianglin Hu; Zilin Tong; Zhenhu Hu; Guowei Chen; Tianhu Chen

Roxarsone, an organoarsenic compound serving as a common feeding additive in poultry industry, brings about potential risk of the toxic inorganic arsenate contamination in ambient environment. Current understanding in the dynamics of roxarsone removal and the determining environmental processes remains unclear, thus restricts the progress in roxarsone-contaminated wastewater treatment. In this study, the adsorption of roxarsone on multi-walled carbon nanotubes (MWCNTs) was investigated. The adsorption of roxarsone on MWCNTs decreased dramatically with increasing pH from 2.0 to 11.7 and decreased significantly with increasing ionic strength from 0 to 1.0 mol/L KCl. It was found that the sorption isotherms of roxarsone on MWCNTs were nonlinear, which can be well described according to the Freundlich and Polanyi-Manes models. Thermodynamic analysis indicates that the adsorption of roxarsone on MWCNTs is an exothermic and spontaneous process. Sorption site energy analysis reveals a distribution of sorption energy and the heterogeneous adsorption sites of roxarsone on MWCNTs. The dynamic adsorption with column shows the potential of the practical application for the roxarsone-contaminated wastewater treatment by MWCNTs. The FTIR analysis indicates that EDA interaction and electrostatic repulsion might be the dominant mechanisms for the adsorption of roxarsone on MWCNTs.


Chemosphere | 2013

Magnetic zeolite NaA: Synthesis, characterization based on metakaolin and its application for the removal of Cu2+, Pb2+

Haibo Liu; Shuchuan Peng; Lin Shu; Tianhu Chen; Teng Bao; Ray L. Frost

The optimum parameters for synthesis of zeolite NaA based on metakaolin were investigated according to results of cation exchange capacity and static water adsorption of all synthesis products and selected X-ray diffraction (XRD). Magnetic zeolite NaA was synthesized by adding Fe3O4 in the precursor of zeolite. Zeolite NaA and magnetic zeolite NaA were characterized with scanning electron microscopy (SEM) and XRD. Magnetic zeolite NaA with different Fe3O4 loadings was prepared and used for removal of heavy metals (Cu(2+), Pb(2+)). The results show the optimum parameters for synthesis zeolite NaA are SiO2/Al2O3=2.3, Na2O/SiO2=1.4, H2O/Na2O=50, crystallization time 8h, crystallization temperature 95 °C. The addition of Fe3O4 makes the NaA zeolite with good magnetic susceptibility and good magnetic stability regardless of the Fe3O4 loading, confirming the considerable separation efficiency. Additionally, Fe3O4 loading had a little effect on removal of heavy metal by magnetic zeolite, however, the adsorption capacity still reaches 2.3 mmol g(-1) for Cu(2+), Pb(2+) with a removal efficiency of over 95% in spite of 4.7% Fe3O4 loading. This indicates magnetic zeolite can be used to remove metal heavy at least Cu(2+), Pb(2+) from water with metallic contaminants and can be separated easily after a magnetic process.


Bioresource Technology | 2014

Competitive adsorption of heavy metal by extracellular polymeric substances (EPS) extracted from sulfate reducing bacteria.

Jin Wang; Qing Li; Ming-Ming Li; Tianhu Chen; Yue-Fei Zhou; Zheng-Bo Yue

Competitive adsorption of heavy metals by extracellular polymeric substances (EPS) extracted from Desulfovibrio desulfuricans was investigated. Chemical analysis showed that different EPS compositions had different capacities for the adsorption of heavy metals which was investigated using Cu(2+) and Zn(2+). Batch adsorption tests indicated that EPS had a higher combined ability with Zn(2+) than Cu(2+). This was confirmed and explained by Fourier transform infrared (FTIR) and excitation-emission matrix (EEM) spectroscopy analysis. FTIR analysis showed that both polysaccharides and protein combined with Zn(2+) while only protein combined with Cu(2+). EEM spectra further revealed that tryptophan-like substances were the main compositions reacted with the heavy metals. Moreover, Zn(2+) had a higher fluorescence quenching ability than Cu(2+).


Bioresource Technology | 2010

Anaerobic digestibility and fiber composition of bulrush in response to steam explosion

Jin Wang; Zheng-Bo Yue; Tianhu Chen; Shu-Chuan Peng; Han-Qing Yu; Hongzhang Chen

Steam explosion, one potential commercial pretreatment method for lignocellulosic wastes, was used to improve methane production of bulrush. Steam exploded bulrush showed a higher methane yield than the raw sample. The effects of steam pressure, moisture content and residence time on the concentration of neutral detergent fiber (NDF) and methane yield were described using a second order polynomial equation. A minimum NDF content of 30.6% was achieved under pretreatment condition with moisture content of 16.55%, steam pressure of 1.52 MPa and residence time of 5.17 min. A maximum methane yield of 205.3 ml per degradable volatile solid was obtained at 11.0% moisture, 1.72 MPa steam pressure, and 8.14 min residence time. The breakage and disruption of rigid lignin structure by steam explosion was confirmed by thermogravimetric analysis.


Chinese Journal of Catalysis | 2010

Effect of Additives on Catalytic Cracking of Biomass Gasification Tar over a Nickel-Based Catalyst

Haibo Liu; Tianhu Chen; Xianlong Zhang; Jinhu Li; Dongyin Chang; Lei Song

The palygorskite-supported nickel (Ni/PG) catalysts were modified by loading with several additives (Fe, Mg, Mn, and Ce) by incipient wetness impregnation. The effect of the additives and their content on the catalytic activity of Ni/PG and H2 yield in tar cracking was investigated. The catalysts were characterized by X-ray diffraction and transmission electron microscopy. The content of the additives affected the catalyst activity and the selectivity in tar cracking. Fe was the best species for promoting the performance of Ni/PG both in tar conversion and H2 yield. Increasing the Fe loading amount over the Ni/PG catalyst was favorable for tar removal.


Journal of Hazardous Materials | 2017

Mechanical investigation of U(VI) on pyrrhotite by batch, EXAFS and modeling techniques.

Haibo Liu; Yuke Zhu; Bin Xu; Ping Li; Yubing Sun; Tianhu Chen

The interaction mechanism of U(VI) on pyrrhotite was demonstrated by batch, spectroscopic and modeling techniques. Pyrite was selected as control group in this study. The removal of U(VI) on pyrite and pyrrhotite significantly decreased with increasing ionic strength from 0.001 to 0.1mol/L at pH 2.0-6.0, whereas the no effect of ionic strength was observed at pH >6.0. The maximum removal capacity of U(VI) on pyrite and pyrrhotite calculated from Langmuir model was 10.20 and 21.34mgg-1 at pH 4.0 and 333K, respectively. The XPS analysis indicated the U(VI) was primarily adsorbed on pyrrhotite and pyrite and then approximately 15.5 and 9.8% of U(VI) were reduced to U(IV) by pyrrhotite and pyrite after 20 days, respectively. Based on the XANES analysis, the adsorption edge of uranium-containing pyrrhotite located between UIVO2(s) and UVIO22+ spectra. The EXAFS analysis demonstrated the inner-sphere surface complexation of U(VI) on pyrrhotite due to the occurrence of U-S shell, whereas the U-U shell revealed the reductive co-precipitates of U(VI) on pyrrhotite/pyrite with increasing reaction times. The surface complexation modeling showed that outer- and inner-surface complexation dominated the U(VI) removal at pH<4 and pH>5.0, respectively. The findings presented herein play a crucial role in the removal of radionuclides on iron sulfide in environmental cleanup applications.


Environmental Science & Technology | 2017

New Synthesis of nZVI/C Composites as an Efficient Adsorbent for the Uptake of U(VI) from Aqueous Solutions

Haibo Liu; Mengxue Li; Tianhu Chen; Changlun Chen; Njud S. Alharbi; Tasawar Hayat; Dong Chen; Qiang Zhang; Yubing Sun

New nanoscale zerovalent iron/carbon (nZVI/C) composites were successfully prepared via heating natural hematite and pine sawdust at 800 °C under nitrogen conditions. Characterization by SEM, XRD, FTIR, and XPS analyses indicated that the as-prepared nZVI/C composites contained a large number of reactive sites. The lack of influence of the ionic strength revealed inner-sphere complexation dominated U(VI) uptake by the nZVI/C composites. Simultaneous adsorption and reduction were involved in the uptake process of U(VI) according to the results of XPS and XANES analyses. The presence of U-C/U-U shells demonstrated that innersphere complexation and surface coprecipitation dominated the U(VI) uptake at low and high pH conditions, respectively. The uptake behaviors of U(VI) by the nZVI/C composites were fitted well by surface complexation modeling with two weak and two strong sites. The maximum uptake capacity of U(VI) by the nZVI/C composites was 186.92 mg/g at pH 4.0 and 328 K. Additionally, the nZVI/C composites presented good recyclability and recoverability for U(VI) uptake in regeneration experiments. These observations indicated that the nZVI/C composites can be considered as potential adsorbents to remove radionuclides for environmental remediation.

Collaboration


Dive into the Tianhu Chen's collaboration.

Top Co-Authors

Avatar

Haibo Liu

Hefei University of Technology

View shared research outputs
Top Co-Authors

Avatar

Dong Chen

Hefei University of Technology

View shared research outputs
Top Co-Authors

Avatar

Ray L. Frost

Queensland University of Technology

View shared research outputs
Top Co-Authors

Avatar

Chengsong Qing

Hefei University of Technology

View shared research outputs
Top Co-Authors

Avatar

Jingjing Xie

Hefei University of Technology

View shared research outputs
Top Co-Authors

Avatar

Chengzhu Zhu

Hefei University of Technology

View shared research outputs
Top Co-Authors

Avatar

Qiaoqin Xie

Hefei University of Technology

View shared research outputs
Top Co-Authors

Avatar

Jin Wang

Hefei University of Technology

View shared research outputs
Top Co-Authors

Avatar

Hongping He

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Zheng-Bo Yue

Hefei University of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge