Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tiannan Yang is active.

Publication


Featured researches published by Tiannan Yang.


Nature Communications | 2016

The origin of ultrahigh piezoelectricity in relaxor-ferroelectric solid solution crystals.

Fei Li; Shujun Zhang; Tiannan Yang; Zhuo Xu; Nan Zhang; Gang Liu; Jianjun Wang; Jianli Wang; Zhenxiang Cheng; Zuo-Guang Ye; Jun Luo; Thomas R. Shrout; Long-Qing Chen

The discovery of ultrahigh piezoelectricity in relaxor-ferroelectric solid solution single crystals is a breakthrough in ferroelectric materials. A key signature of relaxor-ferroelectric solid solutions is the existence of polar nanoregions, a nanoscale inhomogeneity, that coexist with normal ferroelectric domains. Despite two decades of extensive studies, the contribution of polar nanoregions to the underlying piezoelectric properties of relaxor ferroelectrics has yet to be established. Here we quantitatively characterize the contribution of polar nanoregions to the dielectric/piezoelectric responses of relaxor-ferroelectric crystals using a combination of cryogenic experiments and phase-field simulations. The contribution of polar nanoregions to the room-temperature dielectric and piezoelectric properties is in the range of 50–80%. A mesoscale mechanism is proposed to reveal the origin of the high piezoelectricity in relaxor ferroelectrics, where the polar nanoregions aligned in a ferroelectric matrix can facilitate polarization rotation. This mechanism emphasizes the critical role of local structure on the macroscopic properties of ferroelectric materials.


ACS Nano | 2015

Colossal Room-Temperature Electrocaloric Effect in Ferroelectric Polymer Nanocomposites Using Nanostructured Barium Strontium Titanates

Guangzu Zhang; Xiaoshan Zhang; Tiannan Yang; Qi Li; Long-Qing Chen; Shenglin Jiang; Qing Wang

The electrocaloric effect (ECE) refers to conversion of thermal to electrical energy of polarizable materials and could form the basis for the next-generation refrigeration and power technologies that are highly efficient and environmentally friendly. Ferroelectric materials such as ceramic and polymer films exhibit large ECEs, but each of these monolithic materials has its own limitations for practical cooling applications. In this work, nanosized barium strontium titanates with systematically varied morphologies have been prepared to form polymer nanocomposites with the ferroelectric polymer matrix. The solution-processed polymer nanocomposites exhibit an extraordinary room-temperature ECE via the synergistic combination of the high breakdown strength of a ferroelectric polymer matrix and the large change of polarization with temperature of ceramic nanofillers. It is found that a sizable ECE can be generated under both modest and high electric fields, and further enhanced greatly by tailoring the morphology of the ferroelectric nanofillers such as increasing the aspect ratio of the nanoinclusions. The effect of the geometry of the nanofillers on the dielectric permittivity, polarization, breakdown strength, ECE and crystallinity of the ferroelectric polymer has been systematically investigated. Simulations based on the phase-field model have been carried out to substantiate the experimental results. With the remarkable cooling energy density and refrigerant capacity, the polymer nanocomposites are promising for solid-state cooling applications.


Proceedings of the National Academy of Sciences of the United States of America | 2016

Sandwich-structured polymer nanocomposites with high energy density and great charge–discharge efficiency at elevated temperatures

Qi Li; Feihua Liu; Tiannan Yang; Matthew R. Gadinski; Guangzu Zhang; Long-Qing Chen; Qing Wang

Significance Polymers are the materials of choice for high-energy capacitive storage devices due to their inherent advantages such as being lightweight, their ease of processing, and their high dielectric strength. Yet, their performance deteriorates significantly with increasing operating temperature, which falls short of emerging energy applications under harsh conditions. Here we demonstrate the sandwich-structured polymer nanocomposites with greatly improved energy densities, high power densities, and remarkable charge–discharge efficiencies that far exceed those of the existing polymer-based dielectrics at 150 °C, a temperature oriented toward electric vehicle applications. The development of polymer-based dielectric materials capable of high-temperature operation represents a key element in meeting the technological challenges and fulfilling the requirements of advanced electronics and electrical power systems. The demand for a new generation of high-temperature dielectric materials toward capacitive energy storage has been driven by the rise of high-power applications such as electric vehicles, aircraft, and pulsed power systems where the power electronics are exposed to elevated temperatures. Polymer dielectrics are characterized by being lightweight, and their scalability, mechanical flexibility, high dielectric strength, and great reliability, but they are limited to relatively low operating temperatures. The existing polymer nanocomposite-based dielectrics with a limited energy density at high temperatures also present a major barrier to achieving significant reductions in size and weight of energy devices. Here we report the sandwich structures as an efficient route to high-temperature dielectric polymer nanocomposites that simultaneously possess high dielectric constant and low dielectric loss. In contrast to the conventional single-layer configuration, the rationally designed sandwich-structured polymer nanocomposites are capable of integrating the complementary properties of spatially organized multicomponents in a synergistic fashion to raise dielectric constant, and subsequently greatly improve discharged energy densities while retaining low loss and high charge–discharge efficiency at elevated temperatures. At 150 °C and 200 MV m−1, an operating condition toward electric vehicle applications, the sandwich-structured polymer nanocomposites outperform the state-of-the-art polymer-based dielectrics in terms of energy density, power density, charge–discharge efficiency, and cyclability. The excellent dielectric and capacitive properties of the polymer nanocomposites may pave a way for widespread applications in modern electronics and power modules where harsh operating conditions are present.


Nano Letters | 2015

Purely Electric-Field-Driven Perpendicular Magnetization Reversal

Jia-Mian Hu; Tiannan Yang; Jianjun Wang; Houbing Huang; Jinxing Zhang; Long-Qing Chen; Ce-Wen Nan

If achieved, magnetization reversal purely with an electric field has the potential to revolutionize the spintronic devices that currently utilize power-dissipating currents. However, all existing proposals involve the use of a magnetic field. Here we use phase-field simulations to study the piezoelectric and magnetoelectric responses in a three-dimensional multiferroic nanostructure consisting of a perpendicularly magnetized nanomagnet with an in-plane long axis and a juxtaposed ferroelectric nanoisland. For the first time, we demonstrate a full reversal of perpendicular magnetization via successive precession and damping, driven purely by a perpendicular electric-field pulse of certain pulse duration across the nanoferroelectric. We discuss the materials selection and size dependence of both nanoferroelctrics and nanomagnets for experimental verification. These results offer new inspiration to the design of spintronic devices that simultaneously possess high density, high thermal stability, and high reliability.


Nature Communications | 2015

Magnetoelectric quasi-(0-3) nanocomposite heterostructures

Yanxi Li; Zhongchang Wang; Jianjun Yao; Tiannan Yang; Zhiguang Wang; Jia-Mian Hu; Chunlin Chen; Rong Sun; Zhipeng Tian; Jiefang Li; Long-Qing Chen

Magnetoelectric composite thin films hold substantial promise for applications in novel multifunctional devices. However, there are presently shortcomings for both the extensively studied bilayer epitaxial (2-2) and vertically architectured nanocomposite (1-3) film systems, restricting their applications. Here we design a novel growth strategy to fabricate an architectured nanocomposite heterostructure with magnetic quasiparticles (0) embedded in a ferroelectric film matrix (3) by alternately growing (2-2) and (1-3) layers within the film. The new heteroepitaxial films not only overcome the clamping effect from substrate, but also significantly suppress the leakage current paths through the ferromagnetic phase. We demonstrate, by focusing on switching characteristics of the piezoresponse, that the heterostructure shows magnetic field dependence of piezoelectricity due to the improved coupling enabled by good connectivity amongst the piezoelectric and magnetostrictive phases. This new architectured magnetoelectric heterostructures may open a new avenue for applications of magnetoelectric films in micro-devices.


Scientific Reports | 2015

Effect of strain on voltage-controlled magnetism in BiFeO3-based heterostructures

J. J. Wang; Jia-Mian Hu; Tiannan Yang; Meixin Feng; Jinxing Zhang; L. Q. Chen; Ce Wen Nan

Voltage-modulated magnetism in magnetic/BiFeO3 heterostructures can be driven by a combination of the intrinsic ferroelectric-antiferromagnetic coupling in BiFeO3 and the antiferromagnetic-ferromagnetic exchange interaction across the heterointerface. However, ferroelectric BiFeO3 film is also ferroelastic, thus it is possible to generate voltage-induced strain in BiFeO3 that could be applied onto the magnetic layer across the heterointerface and modulate magnetism through magnetoelastic coupling. Here, we investigated, using phase-field simulations, the role of strain in voltage-controlled magnetism for these BiFeO3-based heterostructures. It is predicted, under certain condition, coexistence of strain and exchange interaction will result in a pure voltage-driven 180° magnetization reversal in BiFeO3-based heterostructures.


Science Advances | 2016

Role of scaffold network in controlling strain and functionalities of nanocomposite films

Aiping Chen; Jia-Mian Hu; Ping Lu; Tiannan Yang; Wenrui Zhang; Leigang Li; Towfiq Ahmed; Erik Enriquez; Marcus Weigand; Qing Su; Haiyan Wang; Jian-Xin Zhu; Judith L. MacManus-Driscoll; Long-Qing Chen; Dmitry Yarotski; Quanxi Jia

The tuning of functional properties in thick oxide films via nanoscaffolds induced large vertical lattice strain. Strain is a novel approach to manipulating functionalities in correlated complex oxides. However, significant epitaxial strain can only be achieved in ultrathin layers. We show that, under direct lattice matching framework, large and uniform vertical strain up to 2% can be achieved to significantly modify the magnetic anisotropy, magnetism, and magnetotransport properties in heteroepitaxial nanoscaffold films, over a few hundred nanometers in thickness. Comprehensive designing principles of large vertical strain have been proposed. Phase-field simulations not only reveal the strain distribution but also suggest that the ultimate strain is related to the vertical interfacial area and interfacial dislocation density. By changing the nanoscaffold density and dimension, the strain and the magnetic properties can be tuned. The established correlation among the vertical interface—strain—properties in nanoscaffold films can consequently be used to tune other functionalities in a broad range of complex oxide films far beyond critical thickness.


Journal of Applied Physics | 2013

Voltage-driven perpendicular magnetic domain switching in multiferroic nanoislands

Jia-Mian Hu; Tiannan Yang; Long-Qing Chen; Ce Wen Nan

We show that, using phase-field simulations, large voltage-driven perpendicular magnetic domain switching can be realized in magnetic-ferroelectric nanoislands with relieved substrate constraint, which is difficult in continuous multiferroic layered thin films due to significant substrate clamping. The as-grown magnetic and ferroelectric domain structures in the heterostructured nanoislands can be tailored by engineering their respective geometric sizes and/or the underlying substrate strain. Influences of the lateral size of the island on the dynamic voltage-driven magnetic domain switching are addressed, whereby an optimum lateral size is identified for illustration. Thus, such three-dimensional multiferroic nanoislands should provide great flexibilities for designing novel high-density spintronic/microelectronic devices with purely voltage-driven means.


Applied Physics Letters | 2014

Predicting effective magnetoelectric response in magnetic-ferroelectric composites via phase-field modeling

Tiannan Yang; Jia-Mian Hu; Ce Wen Nan; Long-Qing Chen

A phase-field model coupled with constitutive equations is formulated to investigate the magnetoelectric cross-coupling in magnetic-ferroelectric composites. The model allows us to obtain equilibrium piezoelectric, piezomagnetic, dielectric, and magnetoelectric properties under a given magnetic or electric field, from the local distributions of polarization, magnetization, and strain in the composites. As an example, effective magnetoelectric coupling coefficient, i.e., magnetic-field-induced voltage output (or changes in polarization), of the CoFe2O4-BaTiO3 composites is numerically calculated. Influences of the phase connectivity and the phase fraction of the composites on the magnetoelectric coupling coefficient are discussed.


ACS Nano | 2017

Flexible Multiferroic Bulk Heterojunction with Giant Magnetoelectric Coupling via van der Waals Epitaxy

Tahta Amrillah; Yugandhar Bitla; Kwangwoo Shin; Tiannan Yang; Ying-Hui Hsieh; Yu-You Chiou; Heng-Jui Liu; Thi Hien Do; Dong Su; Yi-Chun Chen; S.U. Jen; Long-Qing Chen; Kee Hoon Kim; Jenh-Yih Juang; Ying-Hao Chu

Magnetoelectric nanocomposites have been a topic of intense research due to their profound potential in the applications of electronic devices based on spintronic technology. Nevertheless, in spite of significant progress made in the growth of high-quality nanocomposite thin films, the substrate clamping effect still remains a major hurdle in realizing the ultimate magnetoelectric coupling. To overcome this obstacle, an alternative strategy of fabricating a self-assembled ferroelectric-ferrimagnetic bulk heterojunction on a flexible muscovite via van der Waals epitaxy is adopted. In this study, we investigated the magnetoelectric coupling in a self-assembled BiFeO3 (BFO)-CoFe2O4 (CFO) bulk heterojunction epitaxially grown on a flexible muscovite substrate. The obtained heterojunction is composed of vertically aligned multiferroic BFO nanopillars embedded in a ferrimagnetic CFO matrix. Moreover, due to the weak interaction between the flexible substrate and bulk heterojunction, the interface is incoherent and, hence, the substrate clamping effect is greatly reduced. The phase-field simulation model also complements our results. The magnetic and electrical characterizations highlight the improvement in magnetoelectric coupling of the BFO-CFO bulk heterojunction. A magnetoelectric coupling coefficient of 74 mV/cm·Oe of this bulk heterojunction is larger than the magnetoelectric coefficient reported earlier on flexible substrates. Therefore, this study delivers a viable route of fabricating a remarkable magnetoelectric heterojunction and yet flexible electronic devices that are robust against extreme conditions with optimized performance.

Collaboration


Dive into the Tiannan Yang's collaboration.

Top Co-Authors

Avatar

Long-Qing Chen

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Jia-Mian Hu

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jianjun Wang

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Lei Chen

Mississippi State University

View shared research outputs
Top Co-Authors

Avatar

Shiming Lei

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Venkatraman Gopalan

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Xiaoxing Cheng

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shujun Zhang

University of Wollongong

View shared research outputs
Researchain Logo
Decentralizing Knowledge