Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tiansong Wang is active.

Publication


Featured researches published by Tiansong Wang.


Journal of Bacteriology | 2004

Complete Genome Sequence of the Genetically Tractable Hydrogenotrophic Methanogen Methanococcus maripaludis

Erik L. Hendrickson; Rajinder Kaul; Yang Zhou; D. Bovee; P. Chapman; J. Chung; E. Conway de Macario; J. A. Dodsworth; W. Gillett; David E. Graham; Murray Hackett; Andrew K. Haydock; Allison Kang; Miriam Land; Ruth Levy; Thomas J. Lie; Tiffany A. Major; Brian C. Moore; Iris Porat; A. Palmeiri; G. Rouse; C. Saenphimmachak; Dieter Söll; S. Van Dien; Tiansong Wang; William B. Whitman; Qiangwei Xia; Y. Zhang; Frank W. Larimer; Maynard V. Olson

The genome sequence of the genetically tractable, mesophilic, hydrogenotrophic methanogen Methanococcus maripaludis contains 1,722 protein-coding genes in a single circular chromosome of 1,661,137 bp. Of the protein-coding genes (open reading frames [ORFs]), 44% were assigned a function, 48% were conserved but had unknown or uncertain functions, and 7.5% (129 ORFs) were unique to M. maripaludis. Of the unique ORFs, 27 were confirmed to encode proteins by the mass spectrometric identification of unique peptides. Genes for most known functions and pathways were identified. For example, a full complement of hydrogenases and methanogenesis enzymes was identified, including eight selenocysteine-containing proteins, with each being paralogous to a cysteine-containing counterpart. At least 59 proteins were predicted to contain iron-sulfur centers, including ferredoxins, polyferredoxins, and subunits of enzymes with various redox functions. Unusual features included the absence of a Cdc6 homolog, implying a variation in replication initiation, and the presence of a bacterial-like RNase HI as well as an RNase HII typical of the Archaea. The presence of alanine dehydrogenase and alanine racemase, which are uniquely present among the Archaea, explained the ability of the organism to use L- and D-alanine as nitrogen sources. Features that contrasted with the related organism Methanocaldococcus jannaschii included the absence of inteins, even though close homologs of most intein-containing proteins were encoded. Although two-thirds of the ORFs had their highest Blastp hits in Methanocaldococcus jannaschii, lateral gene transfer or gene loss has apparently resulted in genes, which are often clustered, with top Blastp hits in more distantly related groups.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Protein complexing in a methanogen suggests electron bifurcation and electron delivery from formate to heterodisulfide reductase

Kyle C. Costa; Phoebe M. Wong; Tiansong Wang; Thomas J. Lie; Jeremy A. Dodsworth; Ingrid Swanson; June A. Burn; Murray Hackett; John A. Leigh

In methanogenic Archaea, the final step of methanogenesis generates methane and a heterodisulfide of coenzyme M and coenzyme B (CoM-S-S-CoB). Reduction of this heterodisulfide by heterodisulfide reductase to regenerate HS-CoM and HS-CoB is an exergonic process. Thauer et al. [Thauer, et al. 2008 Nat Rev Microbiol 6:579–591] recently suggested that in hydrogenotrophic methanogens the energy of heterodisulfide reduction powers the most endergonic reaction in the pathway, catalyzed by the formylmethanofuran dehydrogenase, via flavin-based electron bifurcation. Here we present evidence that these two steps in methanogenesis are physically linked. We identify a protein complex from the hydrogenotrophic methanogen, Methanococcus maripaludis, that contains heterodisulfide reductase, formylmethanofuran dehydrogenase, F420-nonreducing hydrogenase, and formate dehydrogenase. In addition to establishing a physical basis for the electron-bifurcation model of energy conservation, the composition of the complex also suggests that either H2 or formate (two alternative electron donors for methanogenesis) can donate electrons to the heterodisulfide-H2 via F420-nonreducing hydrogenase or formate via formate dehydrogenase. Electron flow from formate to the heterodisulfide rather than the use of H2 as an intermediate represents a previously unknown path of electron flow in methanogenesis. We further tested whether this path occurs by constructing a mutant lacking F420-nonreducing hydrogenase. The mutant displayed growth equal to wild-type with formate but markedly slower growth with hydrogen. The results support the model of electron bifurcation and suggest that formate, like H2, is closely integrated into the methanogenic pathway.


Molecular & Cellular Proteomics | 2006

Quantitative Proteomics of the Archaeon Methanococcus maripaludis Validated by Microarray Analysis and Real Time PCR

Qiangwei Xia; Erik L. Hendrickson; Yi Zhang; Tiansong Wang; Fred Taub; Brian C. Moore; Iris Porat; William B. Whitman; Murray Hackett; John A. Leigh

For the archaeon Methanococcus maripaludis, a fully sequenced and annotated model species of hydrogenotrophic methanogen, we report validation of quantitative protein level expression ratios on a proteome-wide basis. Using an approach based on quantitative multidimensional capillary HPLC and quadrupole ion trap mass spectrometry, coverage of gene expression approached that currently achievable with transcription microarrays. Comprehensive mass spectrometry-based proteomics and spotted cDNA arrays were used to compare global protein and mRNA levels in a wild-type (S2) and mutant strain (S40) of M. maripaludis. Using linear regression with 652 expression ratios generated by both the proteomic and microarray methods, a product moment correlation coefficient of 0.24 was observed. The correlation improved to 0.61 if only genes showing significant expression changes were included. A novel two-stage method of outlier detection was used for the protein measurements when Dixon’s Q-test by itself failed to give satisfactory results. The log2 transformations of the number of peptides or isotopic peptide pairs associated with each ORF, divided by the predicted molecular weight, were found to have moderately positive correlations with two bioinformatic predictors of gene expression based on codon bias. We detected peptides derived from 939 proteins or 55% of the genome coding capacity. Of these, 60 were overexpressed, and 34 were underexpressed in the mutant. Of the 1722 ORFs encoded in the genome, 1597 or 93% were probed by cDNA arrays. Of these, 50 were more highly expressed, and 45 showed lower expression levels in the mutant relative to the wild type. 15 ORFs were shown to be overexpressed by both methods, and two ORFs were shown to be overexpressed by proteomics and underexpressed by microarray.


BMC Microbiology | 2009

Proteomics of Porphyromonas gingivalis within a model oral microbial community

Masae Kuboniwa; Erik L. Hendrickson; Qiangwei Xia; Tiansong Wang; Hua Xie; Murray Hackett; Richard J. Lamont

BackgroundPorphyromonas gingivalis is a periodontal pathogen that resides in a complex multispecies microbial biofilm community known as dental plaque. Confocal laser scanning microscopy showed that P. gingivalis can assemble into communities in vitro with Streptococcus gordonii and Fusobacterium nucleatum, common constituents of dental plaque. Whole cell quantitative proteomics, along with mutant construction and analysis, were conducted to investigate how P. gingivalis adapts to this three species community.Results1156 P. gingivalis proteins were detected qualitatively during comparison of the three species model community with P. gingivalis incubated alone under the same conditions. Integration of spectral counting and summed signal intensity analyses of the dataset showed that 403 proteins were down-regulated and 89 proteins up-regulated. The proteomics results were inspected manually and an ontology analysis conducted using DAVID. Significant decreases were seen in proteins involved in cell shape and the formation of the cell envelope, as well as thiamine, cobalamin, and pyrimidine synthesis and DNA repair. An overall increase was seen in proteins involved in protein synthesis. HmuR, a TonB dependent outer membrane receptor, was up-regulated in the community and an hmuR deficient mutant was deficient in three species community formation, but was unimpaired in its ability to form mono- or dual-species biofilms.ConclusionCollectively, these results indicate that P. gingivalis can assemble into a heterotypic community with F. nucleatum and S. gordonii, and that a community lifestyle provides physiologic support for P. gingivalis. Proteins such as HmuR, that are up-regulated, can be necessary for community structure.


Environmental Microbiology Reports | 2009

Methylophilaceae link methanol oxidation to denitrification in freshwater lake sediment as suggested by stable isotope probing and pure culture analysis.

Marina G. Kalyuhznaya; Willm Martens-Habbena; Tiansong Wang; Murray Hackett; Sergey M. Stolyar; David A. Stahl; Mary E. Lidstrom; Ludmila Chistoserdova

In this work we assessed the potential for the denitrification linked to methanol consumption in a microbial community inhabiting the top layer of the sediment of a pristine lake, Lake Washington in Seattle. Stable isotope probing with (13) C methanol was implemented in near in situ conditions and also in the presence of added nitrate. This revealed that the bacterial population involved in methanol uptake was dominated by species belonging to the Methylophilaceae, most prominently species belonging to the genus Methylotenera. Based on relative abundance of specific phylotypes in DNA clone libraries generated from (13) C labelled DNA, some of these species appear not to require nitrate to assimilate methanol while others assimilate methanol in a nitrate-dependent fashion. A pure culture of Methylotenera mobilis strain JLW8 previously isolated from the same study site was investigated for denitrification capability. This culture was demonstrated to be able to grow on methanol when nitrate was present, in aerobic conditions, while in media supplemented with ammonium it did not grow on methanol. The denitrifying capability of this strain was further demonstrated in defined laboratory conditions, by measuring accumulation of N2 O. This study provides new insights into the potential involvement of Methylophilaceae in global nitrogen cycling in natural environments and highlights the connection between global carbon and nitrogen cycles.


Molecular Microbiology | 2010

Genetics of the glutamate-mediated methylamine utilization pathway in the facultative methylotrophic beta-proteobacterium Methyloversatilis universalis FAM5

Ekaterina Latypova; Song Yang; Yi Shun Wang; Tiansong Wang; Theodore A. Chavkin; Murray Hackett; Hendrik Schäfer; Marina G. Kalyuzhnaya

The ability of some microbial species to oxidize monomethylamine via glutamate‐mediated pathways was proposed in the 1960s; however, genetic determinants of the pathways have never been described. In the present study we describe a gene cluster essential for operation of the N‐methylglutamate pathway in the methylotrophic beta‐proteobacterium Methyloversatilis universalis FAM5. Four major polypeptides from protein fractions displaying high activities of N‐methylglutamate synthetase, N‐methylglutamate dehydrogenase and γ‐glutamylmethylamide synthetase were selected for mass spectrometry‐based identification. The activities of enzymes were associated with the presence of peptides identified as ferredoxin‐dependent glutamate synthase (GltB2), large subunit of putative heterotetrameric sarcosine oxidase (SoxA) and glutamine synthetase type III (GSIII) respectively. A gene cluster (8.3 kb) harbouring gltB2, soxA and gsIII‐like genes was amplified from M. universalis FAM5, sequenced and assembled. Two partial and six complete open reading frames arranged in the order soxBDAG‐gsIII‐gltB132 were identified and subjected to mutational analysis, functional and metabolic profiling. We demonstrated that gltB‐like and sox‐like genes play a key role in methylamine utilization and encode N‐methylglutamate synthetase and N‐methylglutamate dehydrogenase respectively. Metabolic, enzymatic and mutational analyses showed that the gsIII‐like gene encodes γ‐glutamylmethylamide synthetase; however, this enzyme is not essential for oxidation of methylamine.


Journal of Bacteriology | 2006

Disruption of the Operon Encoding Ehb Hydrogenase Limits Anabolic CO2 Assimilation in the Archaeon Methanococcus maripaludis

Iris Porat; Wonduck Kim; Erik L. Hendrickson; Qiangwei Xia; Yi Zhang; Tiansong Wang; Fred Taub; Brian C. Moore; Iain Anderson; Murray Hackett; John A. Leigh; William B. Whitman

Methanococcus maripaludis is a mesophilic archaeon that reduces CO2 to methane with H2 or formate as an energy source. It contains two membrane-bound energy-conserving hydrogenases, Eha and Ehb. To determine the role of Ehb, a deletion in the ehb operon was constructed to yield the mutant, strain S40. Growth of S40 was severely impaired in minimal medium. Both acetate and yeast extract were necessary to restore growth to nearly wild-type levels, suggesting that Ehb was involved in multiple steps in carbon assimilation. However, no differences in the total hydrogenase specific activities were found between the wild type and mutant in either cell extracts or membrane-purified fractions. Methanogenesis by resting cells with pyruvate as the electron donor was also reduced by 30% in S40, suggesting a defect in pyruvate oxidation. CO dehydrogenase/acetyl coenzyme A (CoA) synthase and pyruvate oxidoreductase had higher specific activities in the mutant, and genes encoding these enzymes, as well as AMP-forming acetyl-CoA synthetase, were expressed at increased levels. These observations support a role for Ehb in anabolic CO2 assimilation in methanococci.


Proteomics | 2008

Comprehensive proteomics of Methylobacterium extorquens AM1 metabolism under single carbon and nonmethylotrophic conditions

Gundula Bosch; Elizabeth Skovran; Qiangwei Xia; Tiansong Wang; Fred Taub; Jonathan A. Miller; Mary E. Lidstrom; Murray Hackett

In order to validate a gel free quantitative proteomics assay for the model methylotrophic bacterium Methylobacterium extorquens AM1, we examined the M. extorquens AM1 proteome under single carbon (methanol) and multicarbon (succinate) growth, conditions that have been studied for decades and for which extensive corroborative data have been compiled. In total, 4447 proteins from a database containing 7556 putative ORFs from M. extorquens AM1 could be identified with two or more peptide sequences, corresponding to a qualitative proteome coverage of 58%. Statistically significant nonzero (log2 scale) differential abundance ratios of methanol/succinate could be detected for 317 proteins using summed ion intensity measurements and 585 proteins using spectral counting, at a q‐value cut‐off of 0.01, a measure of false discovery rate. The results were compared to recent microarray studies performed under equivalent chemostat conditions. The M. extorquens AM1 studies demonstrated the feasibility of scaling up the multidimensional capillary HPLC MS/MS approach to a prokaryotic organism with a proteome more than three times the size of microbes we have investigated previously, while maintaining a high degree of proteome coverage and reliable quantitative abundance ratios.


BMC Microbiology | 2009

Quantitative proteomics of nutrient limitation in the hydrogenotrophic methanogen Methanococcus maripaludis

Qiangwei Xia; Tiansong Wang; Erik L. Hendrickson; Thomas J. Lie; Murray Hackett; John A. Leigh

BackgroundMethanogenic Archaea play key metabolic roles in anaerobic ecosystems, where they use H2 and other substrates to produce methane. Methanococcus maripaludis is a model for studies of the global response to nutrient limitations.ResultsWe used high-coverage quantitative proteomics to determine the response of M. maripaludis to growth-limiting levels of H2, nitrogen, and phosphate. Six to ten percent of the proteome changed significantly with each nutrient limitation. H2 limitation increased the abundance of a wide variety of proteins involved in methanogenesis. However, one protein involved in methanogenesis decreased: a low-affinity [Fe] hydrogenase, which may dominate over a higher-affinity mechanism when H2 is abundant. Nitrogen limitation increased known nitrogen assimilation proteins. In addition, the increased abundance of molybdate transport proteins suggested they function for nitrogen fixation. An apparent regulon governed by the euryarchaeal nitrogen regulator NrpR is discussed. Phosphate limitation increased the abundance of three different sets of proteins, suggesting that all three function in phosphate transport.ConclusionThe global proteomic response of M. maripaludis to each nutrient limitation suggests a wider response than previously appreciated. The results give new insight into the function of several proteins, as well as providing information that should contribute to the formulation of a regulatory network model.


BMC Microbiology | 2012

Proteomics of Streptococcus gordonii within a model developing oral microbial community

Erik L. Hendrickson; Tiansong Wang; Brittany C. Dickinson; Sarah E. Whitmore; Christopher J. Wright; Richard J. Lamont; Murray Hackett

BackgroundStreptococcus gordonii is one of several species that can initiate the formation of oral biofilms that develop into the complex multispecies microbial communities referred to as dental plaque. It is in the context of dental plaque that periodontal pathogens such as Porphyromonas gingivalis cause disease. We have previously reported a whole cell quantitative proteomics investigation of P. gingivalis in a model dental plaque community of S. gordonii, P. gingivalis, and Fusobacterium nucleatum. Here we report the adaptation of S. gordonii to the same model.Results1122 S. gordonii proteins were detected in S. gordonii control samples, 915 in communities with F. nucleatum, 849 with P. gingivalis, and 649 with all three organisms. Quantitative comparisons showed extensive proteome changes in association with F. nucleatum or P. gingivalis individually or both P. gingivalis and F. nucleatum together. The changes were species specific, though the P. gingivalis interaction may be dominant, indicated by large differences between the proteomes with F. nucleatum or P. gingivalis but limited changes between communities with P. gingivalis or both P. gingivalis and F. nucleatum. The results were inspected manually and an ontology analysis conducted using DAVID. Extensive changes were seen in nutrition pathways with increases in energy metabolism and changes in the resulting byproducts, while the acid and sugar repressed PTS (phosphoenolpyruvate dependent phosphotransferase system) sugar transport systems showed decreases. These results were seen across all the multispecies samples, though with different profiles according to the partner species. F. nucleatum association decreased proteins for the metabolic end products acetate and ethanol but increased lactate, the primary source of acidity from streptococcal cultures. P. gingivalis containing samples had a reduction in levels of proteins for ethanol and formate but increased proteins for both acetate and lactate production. The communities also showed increases in exopolysaccharide synthesis, amino acid biosynthesis, and oxidative stress protection and decreases in adhesion and transporter proteins.ConclusionThis study showed that S. gordonii demonstrates species specific responses during interactions with F. nucleatum or P. gingivalis. Extensive changes were seen in energy metabolism and byproduct production implicating nutrient transfer as an important community interaction.

Collaboration


Dive into the Tiansong Wang's collaboration.

Top Co-Authors

Avatar

Murray Hackett

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Qiangwei Xia

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John A. Leigh

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fred Taub

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge