Tianxiang Nan
Northeastern University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Tianxiang Nan.
Advanced Materials | 2013
Ming Liu; Ziyao Zhou; Tianxiang Nan; Brandon M. Howe; Gail J. Brown; Nian X. Sun
Dual E- and H-field control of microwave performance with enhanced ferromagnetic resonance (FMR) tunability has been demonstrated in microwave composites FeGaB/PZN-PT(011). A voltage-impulse-induced non-volatile magnetization switching was also realized in this work, resulting from the hysteretic type of phase transition in PZN-PT(011) at high electric fields. The results provide a framework for developing lightweight, energy efficient, voltage-tunable RF/microwave devices.
Scientific Reports | 2013
Tianxiang Nan; Yu Hui; Matteo Rinaldi; Nian X. Sun
High sensitivity magnetoelectric sensors with their electromechanical resonance frequencies < 200 kHz have been recently demonstrated using magnetostrictive/piezoelectric magnetoelectric heterostructures. In this work, we demonstrate a novel magnetoelectric nano-electromechanical systems (NEMS) resonator with an electromechanical resonance frequency of 215 MHz based on an AlN/(FeGaB/Al2O3) × 10 magnetoelectric heterostructure for detecting DC magnetic fields. This magnetoelectric NEMS resonator showed a high quality factor of 735, and strong magnetoelectric coupling with a large voltage tunable sensitivity. The admittance of the magnetoelectric NEMS resonator was very sensitive to DC magnetic fields at its electromechanical resonance, which led to a new detection mechanism for ultra-sensitive self-biased RF NEMS magnetoelectric sensor with a low limit of detection of DC magnetic fields of ~300 picoTelsa. The magnetic/piezoelectric heterostructure based RF NEMS magnetoelectric sensor is compact, power efficient and readily integrated with CMOS technology, which represents a new class of ultra-sensitive magnetometers for DC and low frequency AC magnetic fields.
Advanced Materials | 2013
Ming Liu; Brandon M. Howe; Lawrence Grazulis; K. Mahalingam; Tianxiang Nan; Nian X. Sun; Gail J. Brown
A critical challenge in realizing magnetoelectrics based on reconfigurable microwave devices, which is the ability to switch between distinct ferromagnetic resonances (FMR) in a stable, reversible and energy efficient manner, has been addressed. In particular, a voltage-impulse-induced two-step ferroelastic switching pathway can be used to in situ manipulate the magnetic anisotropy and enable non-volatile FMR tuning in FeCoB/PMN-PT (011) multiferroic heterostructures.
Scientific Reports | 2015
Tianxiang Nan; Ziyao Zhou; Ming Liu; X. Yang; Yuan Gao; Badih A. Assaf; H.-J. Lin; Siddharth Velu; Xinjun Wang; Haosu Luo; Jimmy Chen; Saad Akhtar; Edward Hu; Rohit Rajiv; Kavin Krishnan; Shalini Sreedhar; D. Heiman; Brandon M. Howe; Gail J. Brown; Nian X. Sun
Strain and charge co-mediated magnetoelectric coupling are expected in ultra-thin ferromagnetic/ferroelectric multiferroic heterostructures, which could lead to significantly enhanced magnetoelectric coupling. It is however challenging to observe the combined strain charge mediated magnetoelectric coupling, and difficult in quantitatively distinguish these two magnetoelectric coupling mechanisms. We demonstrated in this work, the quantification of the coexistence of strain and surface charge mediated magnetoelectric coupling on ultra-thin Ni0.79Fe0.21/PMN-PT interface by using a Ni0.79Fe0.21/Cu/PMN-PT heterostructure with only strain-mediated magnetoelectric coupling as a control. The NiFe/PMN-PT heterostructure exhibited a high voltage induced effective magnetic field change of 375 Oe enhanced by the surface charge at the PMN-PT interface. Without the enhancement of the charge-mediated magnetoelectric effect by inserting a Cu layer at the PMN-PT interface, the electric field modification of effective magnetic field was 202 Oe. By distinguishing the magnetoelectric coupling mechanisms, a pure surface charge modification of magnetism shows a strong correlation to polarization of PMN-PT. A non-volatile effective magnetic field change of 104 Oe was observed at zero electric field originates from the different remnant polarization state of PMN-PT. The strain and charge co-mediated magnetoelectric coupling in ultra-thin magnetic/ferroelectric heterostructures could lead to power efficient and non-volatile magnetoelectric devices with enhanced magnetoelectric coupling.
Applied Physics Letters | 2012
Tianxiang Nan; Zai-Fa Zhou; Jing Lou; Ming Liu; X. Yang; Y. Gao; S. Rand; Nian X. Sun
We report on voltage impulse induced reversible bistable magnetization switching in FeGaB/lead zirconate titanate (PZT) multiferroic heterostructures at room temperature. This was realized through strain-mediated magnetoelectric coupling between ferroelectric PZT and ferromagnetic FeGaB layer. Two reversible and stable voltage-impulse induced mechanical strain states were obtained in the PZT by applying an electric field impulse with its amplitude smaller than the electric coercive field, which led to reversible voltage impulse induced bistable magnetization switching. These voltage impulse induced bistable magnetization switching in multiferroic heterostructures provides a promising approach to power efficient bistable magnetization switching that is crucial for information storage.
Nature Communications | 2015
Ziyao Zhou; Morgan Trassin; Y. Gao; Yuan Gao; Diana Qiu; Khalid Ashraf; Tianxiang Nan; X. Yang; Samuel R. Bowden; Daniel T. Pierce; Mark D. Stiles; John Unguris; Ming Liu; Brandon M. Howe; Gail J. Brown; Sayeef Salahuddin; R. Ramesh; Nian X. Sun
Exchange coupled CoFe/BiFeO3 thin-film heterostructures show great promise for power-efficient electric field-induced 180° magnetization switching. However, the coupling mechanism and precise qualification of the exchange coupling in CoFe/BiFeO3 heterostructures have been elusive. Here we show direct evidence for electric field control of the magnetic state in exchange coupled CoFe/BiFeO3 through electric field-dependent ferromagnetic resonance spectroscopy and nanoscale spatially resolved magnetic imaging. Scanning electron microscopy with polarization analysis images reveal the coupling of the magnetization in the CoFe layer to the canted moment in the BiFeO3 layer. Electric field-dependent ferromagnetic resonance measurements quantify the exchange coupling strength and reveal that the CoFe magnetization is directly and reversibly modulated by the applied electric field through a ~180° switching of the canted moment in BiFeO3. This constitutes an important step towards robust repeatable and non-volatile voltage-induced 180° magnetization switching in thin-film multiferroic heterostructures and tunable RF/microwave devices.
Physical Review B | 2015
Tianxiang Nan; Satoru Emori; Carl T. Boone; Xinjun Wang; Trevor M. Oxholm; John G. Jones; Brandon M. Howe; Gail J. Brown; Nian X. Sun
We experimentally investigate spin-orbit torques and spin pumping in NiFe/Pt bilayers with direct and interrupted interfaces. The dampinglike and fieldlike torques are simultaneously measured with spin-torque ferromagnetic resonance tuned by a dc-bias current, whereas spin pumping is measured electrically through the inverse spin-Hall effect using a microwave cavity. Insertion of an atomically thin Cu dusting layer at the interface reduces the dampinglike torque, fieldlike torque, and spin pumping by nearly the same factor of
IEEE Microwave and Wireless Components Letters | 2013
X. Yang; Jing Wu; S. Beguhn; Tianxiang Nan; Y. Gao; Ziyao Zhou; Nian X. Sun
\ensuremath{\approx}1.4
Journal of Materials Chemistry C | 2016
X. Yang; Ziyao Zhou; Tianxiang Nan; Y. Gao; Guo-Min Yang; Ming Liu; Nian X. Sun
. This finding confirms that the observed spin-orbit torques predominantly arise from diffusive transport of spin current generated by the spin-Hall effect. We also find that spin-current scattering at the NiFe/Pt interface contributes to additional enhancement in magnetization damping that is distinct from spin pumping.
Scientific Reports | 2015
Ziyao Zhou; Brandon M. Howe; Ming Liu; Tianxiang Nan; Xing Chen; K. Mahalingam; Nian X. Sun; Gail J. Brown
Low-loss tunable bandpass filters (BPFs) using partially magnetized ferrites is presented. A magnetic field tunable BPFs was designed based on partially magnetized yttrium iron garnet (YIG) operating at 6.17 GHz, which shows low insertion loss and a large frequency tunability of ~6% under a low bias field of 100 Oe. Power handling measurement on the tunable BPF with partially magnetized YIG slab showed an IP1dB of 11.5-18 dBm within the bias field of 0 to 100 Oe, and over 30 dBm in a saturated state.