Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tianyou Yang is active.

Publication


Featured researches published by Tianyou Yang.


Journal of Cellular and Molecular Medicine | 2016

Association of potentially functional variants in the XPG gene with neuroblastoma risk in a Chinese population

Jing He; Fenghua Wang; Jinhong Zhu; Ruizhong Zhang; Tianyou Yang; Yan Zou; Huimin Xia

XPG gene plays a critical role in the nucleotide excision repair pathway. However, the association between XPG gene polymorphisms and neuroblastoma risk has not been investigated. In this study with 256 neuroblastoma cases and 531 cancer‐free controls, we investigated the effects of five potentially functional polymorphisms (rs2094258 C>T, rs751402 C>T, rs2296147 T>C, rs1047768 T>C and rs873601G>A) on neuroblastoma risk. We calculated odds ratio (OR) and 95% confidence interval (CI) to evaluate the association between the five selected polymorphisms and neuroblastoma risk. False‐positive report probability (FPRP) was utilized to determine whether significant findings were noteworthy or because of a chance. We also performed genotype–phenotype association analysis to explore the biological plausibility of our findings. We found that the rs2094258 T allele was significantly associated with decreased neuroblastoma risk (CT versus CC: adjusted OR = 0.65, 95% CI = 0.47–0.90, P = 0.010; and CT/TT versus CC: adjusted OR = 0.71, 95% CI = 0.53–0.97, P = 0.030) after adjusting for age and gender. The association was more prominent for subjects with retroperitoneal tumour or early‐stage tumour. We also found that carriers of the 2–3 risk genotypes had a significantly increased neuroblastoma risk when compared to carriers of the 0–1 risk genotypes. The association with risk genotypes was more predominant in older children, females and subjects with retroperitoneal tumour or early stage. Our results were further supported by FPRP analysis and genotype–phenotype association analysis. In conclusion, our study verified that the XPG gene rs2094258 C>T polymorphism may contribute to neuroblastoma susceptibility. Our findings require further validation by studies with larger sample size and concerning different ethnicities.


Molecular therapy. Nucleic acids | 2018

Association of Common Genetic Variants in Pre-microRNAs and Neuroblastoma Susceptibility: A Two-Center Study in Chinese Children

Jing He; Yan Zou; Xiaodan Liu; Jinhong Zhu; Jiao Zhang; Ruizhong Zhang; Tianyou Yang; Huimin Xia

Neuroblastoma is a commonly occurring extracranial pediatric solid tumor without defined etiology. Polymorphisms in pre-miRNAs have been demonstrated to associate with the risk of several cancers. So far, no such polymorphism has been investigated in neuroblastoma. With this in mind, we performed a two-center case-control study to assess the association of genetic variants in pre-miRNAs and neuroblastoma susceptibility in Chinese children, including 393 cases and 812 controls. We found that miR-34b/c rs4938723 T > C polymorphism was significantly associated with decreased neuroblastoma risk (TC versus TT: adjusted odds ratio [OR] = 0.51, 95% confidence interval [CI] = 0.39–0.67; TC/CC versus TT: adjusted OR = 0.62, 95% CI = 0.48–0.79). We also observed the significant association between the miR-218 rs11134527 A > G polymorphism and decreased neuroblastoma risk (AG versus AA: adjusted OR = 0.73, 95% CI = 0.56–0.96). Stratified analysis further demonstrated that the protective effect of the rs4938723 T > C polymorphism remained prominent in the subgroups, regardless of age, gender, and clinical stages. In term of sites of origin, this polymorphism significantly reduced the risk of tumors originating from the adrenal gland. We further validated the significant results using false-positive report probability analyses. Overall, the miR-34b/c rs4938723 T > C and miR-218 rs11134527 A > G polymorphisms displayed a protective role from neuroblastoma. These findings need further validation.


Translational Oncology | 2017

Genetic Variations of GWAS-Identified Genes and Neuroblastoma Susceptibility: a Replication Study in Southern Chinese Children

Jing He; Yan Zou; Tongmin Wang; Ruizhong Zhang; Tianyou Yang; Jinhong Zhu; Fenghua Wang; Huimin Xia

Neuroblastoma is one of the most commonly diagnosed solid cancers for children, and genetic factors may play a critical role in neuroblastoma development. Previous genome-wide association studies (GWASs) have identified nine genes associated with neuroblastoma susceptibility in Caucasians. To determine whether genetic variations in these genes are also associated with neuroblastoma susceptibility in Southern Chinese children, we genotyped 25 polymorphisms within these genes by the TaqMan method in 256 cases and 531 controls. Odds ratios (ORs) and 95% confidence intervals (CIs) were used to evaluate the strength of the associations. We performed a meta-analysis to further evaluate the associations. Furthermore, we calculated the area under the receiver-operating characteristic curves (AUC) to assess which gene/genes may better predict neuroblastoma risk. We confirmed that CASC15 rs6939340 A > G, rs4712653 T > C, rs9295536 C > A, LIN28B rs221634 A > T, and LMO1 rs110419 A > G were associated with significantly altered neuroblastoma susceptibility. We also confirmed that rs6939340 A > G (G versus A: OR = 1.30, 95% CI = 1.13-1.50) and rs110419 G > A (A versus G: OR = 1.37, 95% CI = 1.19-1.58) were associated with increased neuroblastoma risk for all subjects. We also found that the combination of polymorphisms in CASC15, LIN28B, and LMO1 may be used to predict neuroblastoma risk (AUC = 0.63, 95% CI = 0.59-0.67). Overall, we verified five GWAS-identified polymorphisms that were associated with neuroblastoma susceptibility alteration for Southern Chinese population; however, these results need further validation in studies with larger sample sizes.


Oncotarget | 2016

LMO1 gene polymorphisms contribute to decreased neuroblastoma susceptibility in a Southern Chinese population

Jing He; Wei Zhong; Jixiao Zeng; Jinhong Zhu; Ruizhong Zhang; Fenghua Wang; Tianyou Yang; Yan Zou; Huimin Xia

Neuroblastoma is one of the most commonly diagnosed extracranial solid tumors in infancy; however, the etiology of neuroblastoma remains largely unknown. Previous genome-wide association study (GWAS) indicated that several common genetic variations (rs110419 A > G, rs4758051 G > A, rs10840002 A > G and rs204938 A > G) in the LIM domain only 1 (LMO1) gene were associated with neuroblastoma susceptibility. The aim of this study was to evaluate the correlation between the four GWAS-identified LMO1 gene polymorphisms and neuroblastoma risk in a Southern Chinese population. We genotyped the four polymorphisms in 256 neuroblastoma cases and 531 controls. Odds ratios (ORs) and 95% confidence intervals (CIs) were used to evaluate the strength of the associations. False-positive report probability was calculated for all significant findings. We found that the rs110419 A > G polymorphism was associated with a significantly decreased neuroblastoma risk (AG vs. AA: adjusted OR = 0.65, 95% CI = 0.47–0.91; GG vs. AA: adjusted OR = 0.58, 95% CI = 0.36–0.91; AG/GG vs. AA: adjusted OR = 0.63, 95% CI = 0.46–0.86), and the protective effect was more predominant in children of age > 18 months, males, subgroups with tumor in adrenal gland and mediastinum, and patients in clinical stages III/IV. These results suggested that LMO1 gene rs110419 A > G polymorphism may contribute to protection against neuroblastoma. Our findings call for further validation studies with larger sample size.


Aging | 2017

The TP53 gene rs1042522 C>G polymorphism and neuroblastoma risk in Chinese children

Jing He; Fenghua Wang; Jinhong Zhu; Zhuorong Zhang; Yan Zou; Ruizhong Zhang; Tianyou Yang; Huimin Xia

TP53, a tumor suppressor gene, plays a critical role in cell cycle control, apoptosis, and DNA damage repair. Previous studies have indicated that the TP53 gene Arg72Pro (rs1042522 C>G) polymorphism is associated with susceptibility to various types of cancer. We evaluated the association of the TP53 gene rs1042522 C>G polymorphism with neuroblastoma susceptibility in a hospital-based study among the Chinese Han population. Enrolled were 256 patients and 531 controls. Odds ratios (ORs) and 95% confidence intervals (CIs) generated using logistic regression models were used to determine the strength of the association of interest. No association was detected between rs1042522 C>G polymorphism and neuroblastoma risk. In our stratification analysis of age, gender, sites of origin, and clinical stages, we observed that subjects with rs1042522 CG/GG genotypes had a lower risk of developing neuroblastoma in the mediastinum (Adjusted OR=0.52, 95% CI=0.33-0.82, P=0.005) than those carrying the CC genotype. These results indicate that TP53 gene rs1042522 C>G polymorphism may exert a weak and site-specific effect on neuroblastoma risk in Southern Chinese children and warrant further confirmation.


International Journal of Medical Sciences | 2016

The Association between GWAS-identified BARD1 Gene SNPs and Neuroblastoma Susceptibility in a Southern Chinese Population

Ruizhong Zhang; Yan Zou; Jinhong Zhu; Xinhao Zeng; Tianyou Yang; Fenghua Wang; Jing He; Huimin Xia

A previous genome-wide association study (GWAS) has found that some common variations in the BARD1 gene were associated with neuroblastoma susceptibility especially for high-risk subjects, and the associations have been validated in Caucasians and African-Americans. However, the associations between BARD1 gene polymorphisms and neuroblastoma susceptibility have not been studied among Asians, not to mention Chinese subjects. In the present study, we investigated the association of three BARD1 polymorphisms (rs7585356 G>A, rs6435862 T>G and rs3768716 A>G) with neuroblastoma susceptibility in 201 neuroblastoma patients and 531 controls using TaqMan methodology. Overall, none of these polymorphisms was significantly associated with neuroblastoma susceptibility. However, stratified analysis showed a more profound association between neuroblastoma risk and rs6435862 TG/GG variant genotypes among older children (adjusted OR=1.55, 95% CI=1.04-2.31), and children with adrenal gland-originated disease (adjusted OR=2.94, 95% CI=1.40-6.18), or with ISSN clinical stages III+IV disease (adjusted OR=1.75, 95% CI=1.09-2.84). Similar results were observed for the variant genotypes of rs3768716 A>G polymorphism among these three subgroups. Our results suggest that the BARD1 rs6435862 T>G and rs3768716 A>G polymorphisms may contribute to increased susceptibility to neuroblastoma, especially for the subjects at age ≥12 months, with adrenal gland-originated or with late clinical stage neuroblastoma. These findings need further validation by prospective studies with larger sample size with subjects enrolled from multicenter, involving different ethnicities.


Journal of Cellular and Molecular Medicine | 2016

Potentially functional polymorphisms in the LIN28B gene contribute to neuroblastoma susceptibility in Chinese children

Jing He; Tianyou Yang; Ruizhong Zhang; Jinhong Zhu; Fenghua Wang; Yan Zou; Huimin Xia

Neuroblastoma is the most commonly diagnosed solid tumour outside the central nervous system in children. However, genetic factors underlying neuroblastoma remain largely unclear. Previous genome‐wide association study indicated that lin‐28 homolog B (LIN28B) might play an important role in the development of neuroblastoma and also contributed to its poor overall survival. With the purpose to evaluate the association between LIN28B gene polymorphisms and neuroblastoma susceptibility in Southern Chinese population, we conducted this study with 256 neuroblastoma cases and 531 cancer‐free controls. Four potentially functional polymorphisms (rs221634 A>T, rs221635 T>C, rs314276 C>A and rs9404590 T>G) were genotyped using Taqman method. Odds ratios (ORs) and 95% confidence intervals (CIs) were calculated to assess the associations between the selected single nucleotide polymorphisms (SNPs) and neuroblastoma susceptibility. We also performed genotype‐phenotype association analysis to explore the effects of the selected SNPs on LIN28B gene transcripts. Our results indicated that the rs221634 TT genotype was associated with an increased neuroblastoma risk (TT versus AA/AT: adjusted OR = 1.50, 95% CI = 1.04–2.17). The association was more pronounced in males, patients with tumour of mediastinum origin, as well as patients in early clinical stages. Moreover, overall analysis and stratified analysis also showed an increased risk of neuroblastoma for carrier of the 2–4 risk genotypes. In summary, these results indicated that the LIN28B rs221634 A>T polymorphism was associated with an increased neuroblastoma risk in Southern Chinese children. These findings need further validation in large studies with different ethnicities involved.


Bioscience Reports | 2018

LINC00673 rs11655237 C>T confers neuroblastoma susceptibility in Chinese population

Zhuorong Zhang; Yitian Chang; Wei Jia; Jiao Zhang; Ruizhong Zhang; Jinhong Zhu; Tianyou Yang; Huimin Xia; Yan Zou; Jing He

Neuroblastoma, which accounts for approximately 10% of all pediatric cancer-related deaths, has become a therapeutic challenge and global burden attributed to poor outcomes and mortality rates of its high-risk form. Previous genome-wide association studies (GWASs) identified the LINC00673 rs11655237 C>T polymorphism to be associated with the susceptibility of several malignant tumors. However, the association between this polymorphism and neuroblastoma susceptibility is not clear. We genotyped LINC00673 rs11655237 C>T in 393 neuroblastoma patients in comparison with 812 age-, gender-, and ethnicity-matched healthy controls. We found a significant association between the LINC00673 rs11655237 C>T polymorphism and neuroblastoma risk (TT compared with CC: adjusted odds ratio (OR) =1.80, 95% confidence interval (CI) =1.06–3.06, P=0.029; TT/CT compared with CC: adjusted OR =1.31, 95% CI =1.02–1.67, P=0.033; and T compared with C: adjusted OR =1.29, 95% CI =1.06–1.58, P=0.013). Furthermore, stratified analysis indicated that the rs11655237 T allele carriers were associated with increased neuroblastoma risk for patients with tumor originating from the adrenal gland (adjusted OR =1.51, 95% CI =1.06–2.14, P=0.021) and International Neuroblastoma Staging System (INSS) stage IV disease (adjusted OR =1.60, 95% CI =1.12–2.30, P=0.011). In conclusion, we verified that the LINC00673 rs11655237 C>T polymorphism might be associated with neuroblastoma susceptibility. Prospective studies with a large sample size and different ethnicities are needed to validate our findings.


EBioMedicine | 2018

Functional Polymorphisms at ERCC1/XPF Genes Confer Neuroblastoma Risk in Chinese Children

Zhen-Jian Zhuo; Wei Liu; Jiao Zhang; Jinhong Zhu; Ruizhong Zhang; Jue Tang; Tianyou Yang; Yan Zou; Jing He; Huimin Xia

Variations in nucleotide excision repair pathway genes may predispose to initiation of cancers. However, polymorphisms of ERCC1/XPF genes and neuroblastoma risk have not been investigated before. To evaluate the relevance of polymorphisms of ERCC1/XPF genes in influencing neuroblastoma susceptibility, we genotyped four polymorphisms in ERCC1/XPF genes using a Chinese population of 393 cases and 812 controls. The results showed that ERCC1 rs2298881 and rs11615 predisposed to enhanced neuroblastoma risk [CA vs. AA: adjusted odds ratio (OR) = 1.94, 95% confidence interval (CI) = 1.30–2.89, P = 0.0012; CC vs. AA: adjusted OR = 2.18, 95% CI = 1.45–3.26, P = 0.0002 for rs2298881, and AG vs. GG: adjusted OR = 1.31, 95% CI = 1.02–1.69, P = 0.038 for rs11615]. Moreover, XPF rs2276466 was also associated with increased neuroblastoma risk (GG vs. CC: adjusted OR = 1.66, 95% CI = 1.02–2.71, P = 0.043). In the combined analysis of ERCC1, we found that carriers with 2–3 risk genotypes were more likely to get risk of neuroblastoma, when compared to those with 0–1 risk genotype (adjusted OR = 1.75; 95% CI = 1.25–2.45, P = 0.0012). Our study indicates that common genetic variations in ERCC1/XPF genes predispose to neuroblastoma risk, which needs to be further validated by ongoing efforts.


OncoTargets and Therapy | 2017

Common variations within HACE1 gene and neuroblastoma susceptibility in a Southern Chinese population

Zhuorong Zhang; Ruizhong Zhang; Jinhong Zhu; Fenghua Wang; Tianyou Yang; Yan Zou; Jing He; Huimin Xia

Neuroblastoma is a common fatal pediatric cancer of the developing sympathetic nervous system, which accounts for ~10% of all pediatric cancer deaths. To investigate genetic risk factors related to neuroblastoma, many genome-wide association studies have been performed, and single nucleotide polymorphisms (SNPs) within HACE1 gene have been identified to associate with neuroblastoma risk. However, the association of the HACE1 SNPs with neuroblastoma needs to be validated in Southern Chinese children. We genotyped five SNPs located in the HACE1 gene (rs4336470 C>T, rs9404576 T>G, rs4079063 A>G, rs2499663 T>C, and rs2499667 A>G) in 256 Southern Chinese patients in comparison with 531 ethnically matched healthy controls. Single locus analysis showed no significant association between any of HACE1 SNPs and neuroblastoma risk in Southern Chinese children. However, when all the risk genotypes were combined, we found a borderline significant trend toward an increased neuroblastoma risk with 4–5 risk genotypes (adjusted odds ratio =1.36, 95% confidence interval =0.98–1.89, P=0.065). Moreover, stratified analysis found that carriers of 4–5 risk genotypes tended to develop neuroblastoma in the retroperitoneal region and have more aggressive tumors, progressing to advanced clinical stages III/IV, when compared with those of 0–3 risk genotypes. In conclusion, HACE1 gene may have weak effect on neuroblastoma risk in Southern Chinese children. Large well-designed studies are needed to strengthen our findings.

Collaboration


Dive into the Tianyou Yang's collaboration.

Top Co-Authors

Avatar

Huimin Xia

Guangzhou Medical University

View shared research outputs
Top Co-Authors

Avatar

Jing He

Guangzhou Medical University

View shared research outputs
Top Co-Authors

Avatar

Yan Zou

Guangzhou Medical University

View shared research outputs
Top Co-Authors

Avatar

Jinhong Zhu

Harbin Medical University

View shared research outputs
Top Co-Authors

Avatar

Ruizhong Zhang

Guangzhou Medical University

View shared research outputs
Top Co-Authors

Avatar

Fenghua Wang

Guangzhou Medical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zhuorong Zhang

Guangzhou Medical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chao Hu

Guangzhou Medical University

View shared research outputs
Researchain Logo
Decentralizing Knowledge