Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tibor Bedekovics is active.

Publication


Featured researches published by Tibor Bedekovics.


The EMBO Journal | 2005

Biogenesis of cytosolic ribosomes requires the essential iron-sulphur protein Rli1p and mitochondria.

Gyula Kispal; Katalin Sipos; Heike Lange; Zsuzsanna Fekete; Tibor Bedekovics; Tamás Janáky; Jochen Bassler; Daili J. A. Netz; Janneke Balk; Carmen Rotte; Roland Lill

Mitochondria perform a central function in the biogenesis of cellular iron–sulphur (Fe/S) proteins. It is unknown to date why this biosynthetic pathway is indispensable for life, the more so as no essential mitochondrial Fe/S proteins are known. Here, we show that the soluble ATP‐binding cassette (ABC) protein Rli1p carries N‐terminal Fe/S clusters that require the mitochondrial and cytosolic Fe/S protein biogenesis machineries for assembly. Mutations in critical cysteine residues of Rli1p abolish association with Fe/S clusters and lead to loss of cell viability. Hence, the essential character of Fe/S clusters in Rli1p explains the indispensable character of mitochondria in eukaryotes. We further report that Rli1p is associated with ribosomes and with Hcr1p, a protein involved in rRNA processing and translation initiation. Depletion of Rli1p causes a nuclear export defect of the small and large ribosomal subunits and subsequently a translational arrest. Thus, ribosome biogenesis and function are intimately linked to the crucial role of mitochondria in the maturation of the essential Fe/S protein Rli1p.


Journal of Biological Chemistry | 2010

Normal and Friedreich Ataxia Cells Express Different Isoforms of Frataxin with Complementary Roles in Iron-Sulfur Cluster Assembly

Oleksandr Gakh; Tibor Bedekovics; Samantha F. Duncan; Douglas Y. Smith; Donald S. Berkholz; Grazia Isaya

Friedreich ataxia (FRDA) is an autosomal recessive degenerative disease caused by insufficient expression of frataxin (FXN), a mitochondrial iron-binding protein required for Fe-S cluster assembly. The development of treatments to increase FXN levels in FRDA requires elucidation of the steps involved in the biogenesis of functional FXN. The FXN mRNA is translated to a precursor polypeptide that is transported to the mitochondrial matrix and processed to at least two forms, FXN42–210 and FXN81–210. Previous reports suggested that FXN42–210 is a transient processing intermediate, whereas FXN81–210 represents the mature protein. However, we find that both FXN42–210 and FXN81–210 are present in control cell lines and tissues at steady-state, and that FXN42–210 is consistently more depleted than FXN81–210 in samples from FRDA patients. Moreover, FXN42–210 and FXN81–210 have strikingly different biochemical properties. A shorter N terminus correlates with monomeric configuration, labile iron binding, and dynamic contacts with components of the Fe-S cluster biosynthetic machinery, i.e. the sulfur donor complex NFS1·ISD11 and the scaffold ISCU. Conversely, a longer N terminus correlates with the ability to oligomerize, store iron, and form stable contacts with NFS1·ISD11 and ISCU. Monomeric FXN81–210 donates Fe2+ for Fe-S cluster assembly on ISCU, whereas oligomeric FXN42–210 donates either Fe2+ or Fe3+. These functionally distinct FXN isoforms seem capable to ensure incremental rates of Fe-S cluster synthesis from different mitochondrial iron pools. We suggest that the levels of both isoforms are relevant to FRDA pathophysiology and that the FXN81–210/FXN42–210 molar ratio should provide a useful parameter to optimize FXN augmentation and replacement therapies.


Journal of Biological Chemistry | 2011

Leucine Biosynthesis Regulates Cytoplasmic Iron-Sulfur Enzyme Biogenesis in an Atm1p-independent Manner

Tibor Bedekovics; Hongqiao Li; Gabriella B. Gajdos; Grazia Isaya

Background: Leu1p is an abundant cytoplasmic [4Fe-4S] enzyme thought to require Fe-S clusters (ISCs) exported from mitochondria via the Atm1p transporter. Results: Active Leu1p is synthesized at the expense of mitochondrial aconitase independently of Atm1p overexpression or depletion. Conclusion: Atm1p is not implicated in exporting ISCs for Leu1p activation. Significance: Further studies should identify molecules and mechanisms controlling ISC distribution between mitochondria and cytoplasm. Fe-S clusters (ISCs) are versatile cofactors utilized by many mitochondrial, cytoplasmic, and nuclear enzymes. Whereas mitochondria can independently initiate and complete ISC synthesis, other cellular compartments are believed to assemble ISCs from putative precursors exported from the mitochondria via an ATP binding cassette (ABC) transporter conserved from yeast (Atm1p) to humans (ABCB7). However, the regulatory interactions between mitochondrial and extramitochondrial ISC synthesis are largely unknown. In yeast, we found that mitochondrial ISC synthesis is regulated by the leucine biosynthetic pathway, which among other proteins involves an abundant cytoplasmic [4Fe-4S] enzyme, Leu1p. Enzymatic blocks in the pathway (i.e. leu1Δ or leu2Δ gene deletion mutations) induced post-transcriptional up-regulation of core components of mitochondrial ISC biosynthesis (i.e. the sulfur donor Nfs1p, the iron donor Yfh1p, and the ISC scaffold Isu1p). In leu2Δ cells, transcriptional mechanisms also led to dramatic up-regulation of Leu1p with concomitant down-regulation of mitochondrial aconitase (Aco1p), a [4Fe-4S] enzyme in the tricarboxylic acid cycle. Accordingly, the leu2Δ deletion mutation exacerbated Aco1p inactivation in cells with mutations in Yfh1p. These data indicate that defects in leucine biosynthesis promote the biogenesis of enzymatically active Leu1p at the expense of Aco1p activity. Surprisingly, this effect is independent of Atm1p; previous reports linking the loss of Leu1p activity to Atm1p depletion were confounded by the fact that LEU2 was used as a selectable marker to create Atm1p-depleted cells, whereas a leu2Δ allele was present in Atm1p-repleted controls. Thus, still largely unknown transcriptional and post-transcriptional mechanisms control ISC distribution between mitochondria and other cellular compartments.


Oncotarget | 2015

UCHL1 is a biomarker of aggressive multiple myeloma required for disease progression

Sajjad Hussain; Tibor Bedekovics; Marta Chesi; P. Leif Bergsagel; Paul J. Galardy

The success of proteasome inhibition in multiple myeloma highlights the critical role for the ubiquitin-proteasome system (UPS) in this disease. However, there has been little progress in finding more specific targets within the UPS involved in myeloma pathogenesis. We previously found the ubiquitin hydrolase UCH-L1 to be frequently over-expressed in B-cell malignancies, including myeloma, and showed it to be a potent oncogene in mice. Here we show that UCH-L1 is a poor prognostic factor that is essential for the progression of myeloma. We found high levels of UCHL1 to predict early progression in newly diagnosed patients; a finding reversed by the inclusion of bortezomib. We also found high UCHL1 levels to be a critical factor in the superiority of bortezomib over high-dose dexamethasone in relapsed patients. High UCHL1 partially overlaps with, but is distinct from, known genetic risks including 4p16 rearrangement and 1q21 amplification. Using an orthotopic mouse model, we found UCH-L1 depletion delays myeloma dissemination and causes regression of established disease. We conclude that UCH-L1 is a biomarker of aggressive myeloma that may be an important marker of bortezomib response, and may itself be an effective target in disseminated disease.


Blood | 2016

UCH-L1 is induced in germinal center B-cells and identifies patients with aggressive germinal center diffuse large B-cell lymphoma

Tibor Bedekovics; Sajjad Hussain; Andrew L. Feldman; Paul J. Galardy

Gene expression profiling has identified 2 major subclasses of diffuse large B-cell lymphoma (DLBCL). Cases resembling germinal center (GC) B cells (GCB-DLBCL) generally occur in younger patients, have a distinct molecular pathophysiology, and have improved outcomes compared with those similar to activated post-GC cells (activated B-cell DLBCL). We previously found that the ubiquitin hydrolase UCH-L1 is frequently overexpressed in mature B-cell malignancies and is a potent oncogene in mice. The cause for its overexpression in lymphoma, and whether it impacts the outcome of patients with DLBCL is unknown. Here, we show that UCH-L1 reflects GC lineage in lymphoma and is an oncogenic biomarker of aggressive GCB-DLBCL. We find that UCH-L1 is specifically induced in GC B cells in mice and humans, and that its expression correlates highly with the GCB subtype in DLBCL. We also find that UCH-L1 cooperates with BCL6 in a mouse model of GC B-cell lymphoma, but not with the development of multiple myeloma derived from post-GC cells. Despite the typically good outcomes of GCB-DLBCL, increased UCHL1 identifies a subgroup with early relapses independent of MYC expression, suggesting biological diversity in this subset of disease. Consistent with this, forced Uchl1 overexpression had a substantial impact on gene expression in GC B cells including pathways of cell cycle progression, cell death and proliferation, and DNA replication. These data demonstrate a novel role for UCH-L1 outside of the nervous system and suggest its potential use as a biomarker and therapeutic target in DLBCL.


British Journal of Haematology | 2016

Targeting childhood, adolescent and young adult non-Hodgkin lymphoma: Therapeutic horizons

Paul J. Galardy; Tibor Bedekovics; Michelle L. Hermiston

Non‐Hodgkin lymphoma (NHL) is the third most common malignancy in children, adolescents and young adults (CAYA). NHL is a diverse set of diseases that arise at key regulatory checkpoints during B or T cell development in the bone marrow, germinal centre or thymus. While advances in the use of conventional cytotoxic agents have led to dramatic improvements in survival, these cures are associated with significant acute and long‐term toxicities. Moreover, the prognosis for CAYA patients with relapsed or refractory NHL remains dismal, with the vast majority dying of their disease. Thanks to a large number of candidate‐based biological studies, together with large‐scale sequencing efforts, there has been an explosion of knowledge regarding the molecular pathophysiology of B‐ and T‐NHL. This has ushered development of a flurry of novel therapeutic approaches that may simultaneously provide new hope for relapsed patients and an opportunity to reduce the therapeutic burden in newly diagnosed CAYA. Here we review a selection of the most promising new therapeutic approaches to these diseases. While the vast majority of these agents are untested in children, on‐going work from many cooperative groups will soon explore their use in paediatric disease, in hope of further improving outcomes while maximizing quality of life.


Blood | 2018

UCH-L1 bypasses mTOR to promote protein biosynthesis and is required for MYC driven lymphomagenesis in mice

Sajjad Hussain; Tibor Bedekovics; Qiuling Liu; Wenqian Hu; Haeseung Jeon; Sarah H. Johnson; George Vasmatzis; Danielle G. May; Kyle J. Roux; Paul J. Galardy

The mechanistic target of rapamycin (mTOR) is a central regulator of cellular proliferation and metabolism. Depending on its binding partners, mTOR is at the core of 2 complexes that either promote protein biosynthesis (mTOR complex 1; mTORC1) or provide survival and proliferation signals (mTORC2). Protein biosynthesis downstream of mTORC1 plays an important role in MYC-driven oncogenesis with translation inhibitors garnering increasing therapeutic attention. The germinal center B-cell oncogene UCHL1 encodes a deubiquitinating enzyme that regulates the balance between mTOR complexes by disrupting mTORC1 and promoting mTORC2 assembly. While supporting mTORC2-dependent growth and survival signals may contribute to its role in cancer, the suppression of mTORC1 activity is enigmatic, as its phosphorylation of its substrate 4EBP1 promotes protein biosynthesis. To address this, we used proximity-based proteomics to identify molecular complexes with which UCH-L1 associates in malignant B cells. We identified a novel association of UCH-L1 with the translation initiation complex eIF4F, the target of 4EBP1. UCH-L1 associates with and promotes the assembly of eIF4F and stimulates protein synthesis through a mechanism that requires its catalytic activity. Because of the importance of mTOR in MYC-driven oncogenesis, we used novel mutant Uchl1 transgenic mice and found that catalytic activity is required for its acceleration of lymphoma in the Eμ-myc model. Further, we demonstrate that mice lacking UCH-L1 are resistant to MYC-induced lymphomas. We conclude that UCH-L1 bypasses the need for mTORC1-dependent protein synthesis by directly promoting translation initiation, and that this mechanism may be essential for MYC in B-cell malignancy.


Fems Yeast Research | 2007

Partial conservation of functions between eukaryotic frataxin and the Escherichia coli frataxin homolog CyaY

Tibor Bedekovics; Gabriella Gajdos; Gyula Kispal; Grazia Isaya


Blood | 2015

UCH-L1 Cooperates with BCL6 and Identifies Patients with Aggressive Germinal Center Diffuse Large B-Cell Lymphoma

Tibor Bedekovics; Sajjad Hussain; Andrew L. Feldman; Paul J. Galardy


Blood | 2015

UCHL1 Is a Biomarker of Aggressive Multiple Myeloma Required for Disease Progression

Sajjad Hussain; Tibor Bedekovics; Marta Chesi; Leif Bergsagel; Paul J. Galardy

Collaboration


Dive into the Tibor Bedekovics's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge