Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tibor Páli is active.

Publication


Featured researches published by Tibor Páli.


Free Radical Biology and Medicine | 1993

Effects of SOD, catalase, and a novel antiarrhythmic drug, EGB 761, on reperfusion-induced arrhythmias in isolated rat hearts

Arpad Tosaki; Marie T. Droy-Lefaix; Tibor Páli; Dipak K. Das

Effects of superoxide dismutase (SOD), catalase, EGB 761 (Tanakan), and their combination on reperfusion-induced ventricular fibrillation (VF), tachycardia (VT), and the formation of oxygen free radicals were studied after 30 min of global ischemia followed by reperfusion in isolated rat hearts. In the first series of studies, rats received a daily dose of 10(4), 2 x 10(4), or 5 x 10(4) U/kg of SOD (i.v.); 2.5 x 10(4), 5 x 10(4), or 10(5) U/kg of catalase (i.v.); and 25, 50, 100, or 200 mg/kg of EGB 761 (per os), respectively, for 10 d (chronic administration). Neither SOD nor catalase alone reduced the incidence of reperfusion arrhythmias, but EGB 761 dose-dependently reduced the incidence of such arrhythmias. The coadministration of SOD (5 x 10(4) U/kg) with catalase (5 x 10(4) U/kg) significantly reduced the incidence of VF and VT. The same reduction in the incidence of VF and VT was observed when SOD (5 x 10(4) U/kg) was given in combination with EGB 761 (50 mg/kg). In the second series of studies, hearts were isolated and perfused with 5 x 10(4) U/l of SOD plus 5 x 10(4) U/l of catalase (acute treatment), and the incidence of reperfusion-induced VF and VT was significantly reduced. The combination of SOD (5 x 10(4) U/l) with EGB 761 (50 mg/l) also reduced the incidence of VF and VT. In these experiments, we studied the time course of oxygen radical formation using 5,5-dimethyl-pyrroline-N-oxide (DMPO), a spin trap, and it was found that EGB 761 (200 mg/l) or the coadministration of EGB 761 (50 mg/l) with SOD (5 x 10(4) U/l) almost completely abolished the formation of oxygen radicals during reperfusion measured by electron spin resonance (ESR) spectroscopy. Although SOD or catalase alone significantly reduced the formation of oxygen radicals, these drugs failed to prevent the development of reperfusion arrhythmias, while their combination significantly attenuated both the formation of free radicals and the incidence of reperfusion-induced arrhythmias. Our results indicate that the combination therapy may synergistically reduce the formation of free radicals and the incidence of reperfusion-induced VF and VT.


Biochemical Pharmacology | 1993

Comparisons of ESR and HPLC methods for the detection of OH. radicals in ischemic/reperfused hearts. A relationship between the genesis of free radicals and reperfusion arrhythmias

Tosaki Arpad; Debasis Bagchi; Tibor Páli; Gerald A. Cordis; Dipak K. Das

In this study we compared two methods, electron spin resonance (ESR) spectroscopy and high performance liquid chromatography (HPLC), which are currently used to detect directly hydroxyl radical (OH.) formation in the ischemic and reperfused heart. Isolated buffer-perfused rat hearts were subjected to 30 min of normothermic global ischemia followed by 30 min of reperfusion. 5,5-Dimethyl-pyrroline-N-oxide (DMPO) was used as a spin-trap agent to detect OH. radicals by ESR and HPLC. In additional HPLC studies, salicylic acid was infused into the heart for the detection of OH. radicals. In all studies, the effects of superoxide dismutase (SOD) and catalase (CAT) on the OH. generation were examined. The results of our studies indicate that, irrespective of the method, OH. was always detected when an ischemic heart was reperfused and showed ventricular fibrillation. The OH. concentration increased dramatically between 60 and 90 sec of reperfusion, peaked between 180 and 210 sec, and then progressively decreased. In all cases, both SOD and CAT were able to reduce the formation of OH. radicals, with SOD being relatively more effective. Our results indicate that OH. was produced only in the fibrillating hearts that peaked between 180 and 210 sec (1.64 +/- 0.09 nmol/mL measured by ESR), but not in the non-fibrillating hearts. Although SOD or CAT reduced the OH. formation, they had no effects on the incidence of reperfusion-induced ventricular fibrillation (VF) and ventricular tachycardia (VT). However, when SOD (5 x 10(4) IU/L) was coadministered with CAT (5 x 10(4) IU +/- L), the incidence of reperfusion-induced VF (total) and VT was reduced from their control value of 92 and 100 to 33 (P < 0.05) and 50% (P < 0.05), respectively. The results of this study indicate that the HPLC method, as well as ESR, can be used to detect OH. formation in ischemic/reperfused hearts. Because of the convenience, reproducibility and greater sensitivity, the HPLC technique may be more suitable for OH. detection. Our results further suggest the potential therapeutic value of the combination therapy of SOD and CAT for the reduction of reperfusion-induced VF and VT.


Cellular and Molecular Life Sciences | 2003

Functional significance of the lipid-protein interface in photosynthetic membranes

Tibor Páli; Győző Garab; LászlóI. Horváth; Zoltán Kóta

The functional significance of the lipid-protein interface in photosynthetic membranes, mainly in thylakoids, is reviewed with emphasis on membrane structure and dynamics. The lipid-protein interface is identified primarily by the restricted molecular dynamics of its lipids as compared with the dynamics in the bulk lipid phase of the membrane. In a broad sense, lipid-protein interfaces comprise solvation shell lipids that are weakly associated with the hydrophobic surface of transmembrane proteins but also include lipids that are strongly and specifically bound to membrane proteins or protein assemblies. The relation between protein-associated lipids and the overall fluidity of the thylakoid membrane is discussed. Spin label electron paramagnetic resonance spectroscopy has been identified as the technique of choice to characterize the protein solvation shell in its highly dynamic nature; biochemical and direct structural methods have revealed an increasing number of protein-bound lipids. The structural and functional roles of these protein-bound lipids are mustered, but in most cases they remain to be determined. As suggested by recent data, the interaction of the non-bilayer-forming lipid, monogalactosyldyacilglycerol (MGDG), with the main light-harvesting chlorophyll a/b-binding protein complexes of photosystem-II (LHCII), the most abundant lipid and membrane protein components on earth, play multiple structural and functional roles in developing and mature thylakoid membranes. A brief outlook to future directions concludes this review.


Journal of Vascular Research | 2001

Nitric Oxide, Peroxynitrite and cGMP in Atherosclerosis-Induced Hypertension in Rabbits: Beneficial Effects of Cicletanine

Zoltán Szilvássy; Tamás Csont; Tibor Páli; Marie T. Droy-Lefaix; Péter Ferdinandy

We studied the effect of the furopyridine derivative antihypertensive drug, cicletanine, on blood pressure, vascular nitric oxide (NO) and cyclic guanosine 3′:5′-monophosphate (cGMP) content in the aorta and the renal and carotid arteries, aortic superoxide production, and serum nitrotyrosine level in hypertensive/atherosclerotic rabbits. The effect of cicletanine was compared to that of furosemide. Rabbits were fed a normal or a cholesterol-enriched (1.5%) diet over 8 weeks. On the 8th week, the rabbits were treated per os with 2 × 50 mg/kg daily doses of cicletanine, furosemide, or vehicle for 5 days (n = 5–6 in each groups). The cholesterol diet increased mean arterial blood pressure (MABP) from 86 ± 1 to 94 ± 2 mm Hg (p < 0.05). Cicletanine decreased MABP in atherosclerotic rabbits to 85 ± 1 mm Hg (p < 0.05), but it did not affect MABP in normal animals. Furosemide was without effect in both groups. In normal animals, NO content (assessed by electron spin resonance after in vivo spin trapping) in the aorta and the renal and carotid arteries was increased by cicletanine, and the drug increased cGMP in the renal artery as measured by radioimmunoassay. The cholesterol-enriched diet decreased both vascular NO and cGMP and increased aortic superoxide production assessed by lucigenin-enhanced chemiluminescence and serum nitrotyrosine determined by ELISA. In atherosclerotic animals, cicletanine increased NO and cGMP content in the aorta and the renal and carotid arteries and decreased aortic superoxide production and serum nitrotyrosine. Furosemide did not influence these parameters. We conclude that cicletanine lowers blood pressure in hypertensive/atherosclerotic rabbits. The antihypertensive effect of the drug in atherosclerosis may be based on its beneficial effects on the vascular NO-cGMP system and on the formation of reactive oxygen species.


PLOS ONE | 2011

Heat stress causes spatially-distinct membrane re-modelling in K562 leukemia cells

Gábor Balogh; Giuseppe Maulucci; Imre Gombos; Ibolya Horváth; Zsolt Török; Mária Péter; Elfrieda Fodor; Tibor Páli; Sándor Benkő; Tiziana Parasassi; Marco De Spirito; John L. Harwood; László Vígh

Cellular membranes respond rapidly to various environmental perturbations. Previously we showed that modulations in membrane fluidity achieved by heat stress (HS) resulted in pronounced membrane organization alterations which could be intimately linked to the expression and cellular distribution of heat shock proteins. Here we examine heat-induced membrane changes using several visualisation methods. With Laurdan two-photon microscopy we demonstrate that, in contrast to the enhanced formation of ordered domains in surface membranes, the molecular disorder is significantly elevated within the internal membranes of cells preexposed to mild HS. These results were compared with those obtained by anisotropy, fluorescence lifetime and electron paramagnetic resonance measurements. All probes detected membrane changes upon HS. However, the structurally different probes revealed substantially distinct alterations in membrane heterogeneity. These data call attention to the careful interpretation of results obtained with only a single label. Subtle changes in membrane microstructure in the decision-making of thermal cell killing could have potential application in cancer therapy.


Protoplasma | 2003

Structure prediction for the di-heme cytochrome b561 protein family.

Denys Bashtovyy; Alajos Bérczi; Han Asard; Tibor Páli

Summary. Atomic models possessing the common structural features identified for the cytochrome b561 (cyt b561) protein family are presented. A detailed and extensive sequence analysis was performed in order to identify and characterize protein sequences in this family of transmembrane electron transport proteins. According to transmembrane helix predictions, all sequences contain 6 transmembrane helices of which 2–6 are located closely in the same regions of the 26 sequences in the alignment. A mammalian (Homo sapiens) and a plant (Arabidopsis thaliana) sequence were selected to build 3-dimensional structures at atomic detail using molecular modeling tools. The main structural constraints included the 2 pairs of heme-ligating His residues that are fully conserved in the family and the lipid-facing sides of the helices, which were also very well conserved. The current paper proposes 3-dimensional structures which to our knowledge are the first ones for any protein in the cyt b561 family. The highly conserved His residues anchoring the two hemes on the cytoplasmic side and noncytoplasmic side of the membrane are in all proteins located in the transmembrane helices 2, 4 and 3, 5, respectively. Several highly conserved amino acids with aromatic side chain are identified between the two heme ligation sites. These residues may constitute a putative transmembrane electron transport pathway. The present study demonstrates that the structural features in the cyt b561 family are well conserved at both the sequence and the protein level. The central 4-helix core represents a transmembrane electron transfer architecture that is highly conserved in eukaryotic species.


Biochimica et Biophysica Acta | 1999

Effect of hexavalent chromium on eukaryotic plasma membrane studied by EPR spectroscopy

Joseph Belagyi; Maya Pas; Peter Raspor; Miklós Pesti; Tibor Páli

The effect of Cr(VI) anion on an ergosterol-producing strain of eukaryotic yeast Candida albicans and its mutant with ergosterol-less membrane was studied with EPR spectroscopy. 5- and 14-doxyl stearic acid spin probes were used to label the protoplast membrane after removal of the cell wall. In control experiments, the mutant strain exhibited larger rigidity in the membrane than its parental strain. Addition of Cr(VI), at a minimum inhibitory concentration of 0.6 mM, increased the rotational mobility of the spin labels significantly and decreased the temperature of the structural changes in both strains, in the temperature range between 0 and 30 degrees C. The ergosterol-less mutant, having a membrane composition with increased polyunsaturated fatty acid content, exhibited higher Cr(VI) sensitivity. Treatment of the membrane with Cr(VI) for 10 min already resulted in an increase in membrane fluidity. An EPR signal of Cr(V) was detected which reached maximum amplitude after 120 min of treatment with Cr(VI). Further chemical reduction of Cr(V) in the absence of extracellular Cr(VI) led to a lack of detectable paramagnetic chromium intermediates within 200 min.


Diabetologia | 1996

Effects of Ginkgo biloba extract and preconditioning on the diabetic rat myocardium

A. Tosaki; Tibor Páli; Marie T. Droy-Lefaix

Summary Effects of preconditioning and Ginkgo biloba extract (EGb 761) were studied in isolated non-diabetic and diabetic ischaemic and re-perfused rat hearts. Hearts were randomly divided into five groups in both the age-matched non-diabetic and the 8-week streptozotocin-induced diabetic groups: Group I, hearts were subjected to 30 min of global ischaemia followed by 30 min of re-perfusion; Group II, one cycle of preconditioning consisting of 5 min ischaemia and 10 min re-perfusion before the induction of 30 min of ischaemia and 30 min of re-perfusion; Group III, two cycles of preconditioning; Group IV, three cycles; and Group V, four cycles before the onset of 30 min ischaemia followed by 30 min of re-perfusion. Four cycles of ischaemic preconditioning resulted in a reduction of arrhythmias in non-diabetic rats. Thus, in non-diabetics, the incidence of ventricular fibrillation and tachycardia fell from 92 % and 100 % (no preconditioning) to 33 % (p < 0.05) and 42 % (p < 0.05), respectively. Four cycles of preconditioning failed to reduce the incidence of re-perfusion arrhythmias in diabetic subjects. Preconditioning reduced the formation of oxygen free radicals measured by electron spin resonance spectroscopy, but the recovery of cardiac function was low in all non-diabetic and diabetic preconditioned groups. EGb 761 at 25 and 50 mg/kg improved cardiac function in non-preconditioned and preconditioned non-diabetic and diabetic hearts. During re-perfusion in the four-cycle preconditioned non-diabetic and diabetic groups, the amount of free radicals was reduced approximately by 50 and 70 % using 25 and 50 mg/kg of EGb 761, respectively. EGb 761 improved cardiac function after ischaemia in both non-preconditioned and preconditioned non-diabetic and diabetic rats. Our data suggest that diabetes could abolish the precondition-induced protection. [Diabetologia (1996) 39: 1255–1262]


British Journal of Pharmacology | 1999

Direct myocardial anti‐ischaemic effect of GTN in both nitrate‐tolerant and nontolerant rats: a cyclic GMP‐independent activation of KATP

Tamás Csont; Zoltán Szilvássy; Ferenc Fülöp; Saviana Nedeianu; Tibor Páli; Arpad Tosaki; László Dux; Péter Ferdinandy

We have recently demonstrated that glyceryl trinitrate (GTN) exerts a direct myocardial anti‐ischaemic effect in both GTN‐tolerant and nontolerant rats. Here we examined if this effect is mediated by GTN‐derived nitric oxide (NO) and involves guanosine 3′5′ cyclic monophosphate (cyclic GMP) and ATP‐sensitive K+ channels (KATP). Rats were treated with 100 mg kg−1 GTN or vehicle s.c. three times a day for 3 days to induce vascular GTN‐tolerance or nontolerance. Isolated working hearts obtained from either GTN‐tolerant or nontolerant rats were subjected to 10 min coronary occlusion in the presence of 10−7 M GTN or its solvent. GTN improved myocardial function and reduced lactate dehydrogenase (LDH) release during coronary occlusion in both GTN‐tolerant and nontolerant hearts. Cardiac NO content significantly increased after GTN administration in both GTN‐tolerant and nontolerant hearts as assessed by electron spin resonance. However, cardiac cyclic GMP content measured by radioimmunoassay was not changed by GTN administration. When hearts from both GTN‐tolerant and nontolerant rats were subjected to coronary occlusion in the presence of the KATP‐blocker glibenclamide (10−7 M), the drug itself did not affect myocardial function and LDH release, however, it abolished the anti‐ischaemic effect of GTN. We conclude that GTN opens KATP via a cyclic GMP‐independent mechanism, thereby leading to an anti‐ischaemic effect in the heart in both GTN‐tolerant and nontolerant rats.


Biochemical Pharmacology | 1998

Lack of correlation between myocardial nitric oxide and cyclic guanosine monophosphate content in both nitrate-tolerant and -nontolerant rats

Tamás Csont; Tibor Páli; Zoltán Szilvássy; Péter Ferdinandy

We studied the effect of nitroglycerin (NTG) on cardiac nitric oxide (NO) and cyclic guanosine monophosphate (cGMP) content in nitrate-tolerant/nontolerant rats in vivo. The effect of the pharmacological blockade of endogenous NO synthesis and the effect of exogenous NO on cardiac cGMP were also examined. Rats were treated with 100 mg/kg of NTG and corresponding vehicle s.c. three times a day for 2.5 days to induce NTG-tolerance/nontolerance. Rats were then administered a single dose of s.c. 100 mg/kg of NTG to test the effect of NTG in tolerant/nontolerant states, respectively. Nontolerant rats treated with vehicle were controls, and nontolerant rats treated with the NO synthesis inhibitor NG-nitro-L-arginine (LNNA, 20 mg/kg) were negative controls. Another group of nontolerant rats treated i.v. with the direct NO donor sodium nitroprusside (SNP, 3 mg/kg) were positive controls. Cardiac NO assessed by electron spin resonance after in vivo spin-trapping increased 100-fold (P < 0.05) in the positive control, 10-fold (P < 0.05) in the NTG-tolerant group, and 4-fold (P < 0.05) in the single NTG group, when compared to controls. In the negative control group, NO was reduced to near the detection limit (four-fold reduction, P < 0.05). Cardiac cGMP measured by radioimmunoassay was increased significantly (two-fold, P < 0.05) only in the positive control group, and there were no differences among the other groups. This shows that: 1) in vivo cardiac bioconversion of NTG to NO is not impaired in nitrate tolerance; and 2) changes in cardiac NO content are not reflected by changes in cGMP content in nitrate-tolerant and -nontolerant rats.

Collaboration


Dive into the Tibor Páli's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zoltán Kóta

Hungarian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

LászlóI. Horváth

Hungarian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Malcolm E. Finbow

Glasgow Caledonian University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Neil Dixon

University of Manchester

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Balázs Szalontai

Hungarian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Elfrieda Fodor

Hungarian Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge