Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tiecheng Liu is active.

Publication


Featured researches published by Tiecheng Liu.


Nature | 2007

Transcriptional coactivator PGC-1a integrates the mammalian clock and energy metabolism

Chang Liu; Siming Li; Tiecheng Liu; Jimo Borjigin; Jiandie D. Lin

The mammalian clock regulates major aspects of energy metabolism, including glucose and lipid homeostasis and mitochondrial oxidative metabolism. The biochemical basis for coordinated control of the circadian clock and diverse metabolic pathways is not well understood. Here we show that PGC-1α (Ppargc1a), a transcriptional coactivator that regulates energy metabolism, is rhythmically expressed in the liver and skeletal muscle of mice. PGC-1α stimulates the expression of clock genes, notably Bmal1 (Arntl) and Rev-erbα (Nr1d1), through coactivation of the ROR family of orphan nuclear receptors. Mice lacking PGC-1α show abnormal diurnal rhythms of activity, body temperature and metabolic rate. The disruption of physiological rhythms in these animals is correlated with aberrant expression of clock genes and those involved in energy metabolism. Analyses of PGC-1α-deficient fibroblasts and mice with liver-specific knockdown of PGC-1α indicate that it is required for cell-autonomous clock function. We have thus identified PGC-1α as a key component of the circadian oscillator that integrates the mammalian clock and energy metabolism.


Journal of Pineal Research | 2005

N-acetyltransferase is not the rate-limiting enzyme of melatonin synthesis at night

Tiecheng Liu; Jimo Borjigin

Abstract:  Circadian melatonin production in the pineal gland and retina is under the control of serotonin N‐acetyltransferase (NAT) and hydroxyindole‐O‐methyltransferase. Because NAT activity varies diurnally, it has been considered both the melatonin rhythm‐generating enzyme and the rate‐limiting enzyme of melatonin synthesis. In rats with dramatically reduced NAT activity due to a H28Y mutation in NAT, melatonin levels remained the same as in wildtype controls, suggesting that NAT does not determine the rate of melatonin production at night. Using a combination of molecular approaches with a sensitive in vivo measurement of pineal diurnal melatonin production, we demonstrate that (i) N‐acetylserotonin (NAS), the enzymatic product of NAT, is present in vast excess in the night pineals compared with melatonin; (ii) the continuous increase in NAT protein levels at late night does not produce a proportional increase in melatonin; and (iii) an increase in NAS in the same animal over several circadian cycles do not result in corresponding increase in melatonin output. These results strongly suggest that NAT is not the rate‐limiting enzyme of melatonin formation at night.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Surge of neurophysiological coherence and connectivity in the dying brain

Jimo Borjigin; Un Cheol Lee; Tiecheng Liu; Dinesh Pal; Sean Huff; Daniel Klarr; Jennifer Sloboda; Jason Hernandez; Michael M. Wang; George A. Mashour

The brain is assumed to be hypoactive during cardiac arrest. However, the neurophysiological state of the brain immediately following cardiac arrest has not been systematically investigated. In this study, we performed continuous electroencephalography in rats undergoing experimental cardiac arrest and analyzed changes in power density, coherence, directed connectivity, and cross-frequency coupling. We identified a transient surge of synchronous gamma oscillations that occurred within the first 30 s after cardiac arrest and preceded isoelectric electroencephalogram. Gamma oscillations during cardiac arrest were global and highly coherent; moreover, this frequency band exhibited a striking increase in anterior–posterior-directed connectivity and tight phase-coupling to both theta and alpha waves. High-frequency neurophysiological activity in the near-death state exceeded levels found during the conscious waking state. These data demonstrate that the mammalian brain can, albeit paradoxically, generate neural correlates of heightened conscious processing at near-death.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Dissociation of circadian and light inhibition of melatonin release through forced desynchronization in the rat

Michael D. Schwartz; Cheryl Wotus; Tiecheng Liu; W. Otto Friesen; Jimo Borjigin; Gisele A. Oda; Horacio O. de la Iglesia

Pineal melatonin release exhibits a circadian rhythm with a tight nocturnal pattern. Melatonin synthesis is regulated by the master circadian clock within the hypothalamic suprachiasmatic nucleus (SCN) and is also directly inhibited by light. The SCN is necessary for both circadian regulation and light inhibition of melatonin synthesis and thus it has been difficult to isolate these two regulatory limbs to define the output pathways by which the SCN conveys circadian and light phase information to the pineal. A 22-h light–dark (LD) cycle forced desynchrony protocol leads to the stable dissociation of rhythmic clock gene expression within the ventrolateral SCN (vlSCN) and the dorsomedial SCN (dmSCN). In the present study, we have used this protocol to assess the pattern of melatonin release under forced desynchronization of these SCN subregions. In light of our reported patterns of clock gene expression in the forced desynchronized rat, we propose that the vlSCN oscillator entrains to the 22-h LD cycle whereas the dmSCN shows relative coordination to the light-entrained vlSCN, and that this dual-oscillator configuration accounts for the pattern of melatonin release. We present a simple mathematical model in which the relative coordination of a single oscillator within the dmSCN to a single light-entrained oscillator within the vlSCN faithfully portrays the circadian phase, duration and amplitude of melatonin release under forced desynchronization. Our results underscore the importance of the SCN′s subregional organization to both photic input processing and rhythmic output control.


Reviews in Endocrine & Metabolic Disorders | 2009

Melatonin formation in mammals: In vivo perspectives

Asamanja Chattoraj; Tiecheng Liu; Liang Samantha Zhang; Zheping Huang; Jimo Borjigin

Melatonin is a hormone secreted from the pineal gland specifically at night and contributes to a wide array of physiological functions in mammals. Melatonin is one of the most well understood output of the circadian clock located in the suprachiasmatic nucleus. Melatonin synthesis is controlled distally via the circadian clock located in the suprachiasmatic nucleus and proximally regulated by norepinephrine released in response to the circadian clock signals. To understand melatonin synthesis in vivo, we have performed microdialysis analysis of the pineal gland, which monitors melatonin as well as the precursor (serotonin) and intermediate (N-acetylserotonin) of melatonin synthesis in freely moving animals in realtime at high resolution. Our data revealed a number of novel features of melatonin production undetected using conventional techniques, which include (1) large inter-individual variations of melatonin onset timing; (2) circadian regulation of serotonin synthesis and secretion in the pineal gland; and (3) a revised view on the rate-limiting step of melatonin formation in vivo. This article will summarize the main findings from our laboratory regarding melatonin formation in mammals.


Journal of Circadian Rhythms | 2006

Relationship between nocturnal serotonin surge and melatonin onset in rodent pineal gland

Tiecheng Liu; Jimo Borjigin

Background We have recently reported dynamic circadian rhythms of serotonin (5-HT, 5-hydroxytryptamine) output in the pineal gland of rat, which precedes the onset of N-acetylserotonin (NAS) and melatonin secretion at night. The present study was aimed at investigating in detail the relationship between 5-HT onset (5HT-on) and melatonin onset (MT-on) in multiple strains of rats and comparing them with those of hamsters. Methods Animals were maintained in chambers equipped with light (250 lux at cage levels) and ventilation in a temperature-controlled room. Following surgical implantation of a microdialysis probe in the pineal gland, animals were individually housed for on-line pineal microdialysis and for automated HPLC analysis of 5-HT and melatonin. Animals were under a light-dark cycle of 12:12 h for the duration of the experiments. Results All animals displayed dynamic 5-HT and melatonin rhythms at night. In all cases, 5HT-on (taken at 80% of the daily maximum levels) preceded MT-on (taken at 20% of the daily maximum levels). Within the same animals, 5HT-on as well as MT-on across multiple circadian cycles exhibited minimum variations under entrained conditions. Large inter-individual variations of both 5HT-on and MT-on were found in outbred rats and hamsters under entrained conditions. In comparison, inbred rats displayed very small individual variations of 5HT-on and MT-on. Importantly, we have uncovered a species-specific relationship of 5HT-on and MT-on. 5HT-on of rats, regardless of the strain, preceded MT-on of the same rats by 50 min. In contrast, 5HT-on of hamsters led MT-on by as much as 240 min. Thus, while a constant relationship of 5HT-on and MT-on exists for animals of the same species, the relative timings of 5HT-on and MT-on differ between animals of different species. Conclusion These results suggest that both 5-HT and melatonin could serve as reliable markers of the circadian clock because of their day-to-day precision of onset timings within the same animals or within individuals of the same strain or same species. The results also demonstrate that data for MT-on cannot be compared directly between different species, and that 5HT-on may be a more reliable circadian marker when data from animals of different species are compared.


Journal of Biological Rhythms | 2005

Reentrainment of the circadian pacemaker through three distinct stages.

Tiecheng Liu; Jimo Borjigin

Circadian rhythms are endogenously generated by a central pacemaker and are synchronized to the environmental LD cycle. The rhythms can be resynchronized, or reentrained, after a shift of the LD cycle, as in traveling across time zones. The authors have performed high-resolution mapping of the pacemaker to analyze the reentrainment process using rat pineal melatonin onset (MTon) and melatonin offset (MToff) rhythms as markers. Following LD (12:12) delays of 3, 6, and 12 h, MTon was phase locked immediately, whereas MToff shifted rapidly during the initial 1 through 3 cycles. In all animals, the MToff shifted beyond their expected phase positions in the new LD cycle, which resulted in a transient expansion of melatonin secretion duration for several cycles. It took MToff only 1, 2, or 3 cycles to complete most of the required phase shifts after 3, 6, or 12 h of the LD cycle delays, respectively. However, the final stabilization of phase relationships of both MTon and MToff required at least 6 cycles for rats experiencing a 3-h LD delay and much longer for the rest. These results reaffirmed the notion that both onset and offset phases of melatonin rhythms are important markers for the pacemaker and demonstrated that the reentrainment of the central pacemaker to a delay shift of the LD cycle is a 3-step process: an immediate phase lock of onset and a rapid delay shift of offset rhythms, overshoot of the offset, and, finally, a slow adjustment of both onset and offset phases. This study represents the 1st detailed analysis of the pacemaker behavior during reentrainment using melatonin and supports the notion that the eventual adaptation of the circadian pacemaker to a new time zone is a time-consuming process.


Pharmacology, Biochemistry and Behavior | 2008

Application of long-term microdialysis in circadian rhythm research

Jimo Borjigin; Tiecheng Liu

Our laboratory has pioneered long-term microdialysis to monitor pineal melatonin secretion in living animals across multiple circadian cycles. There are numerous advantages of this approach for rhythm analysis: (1) we can precisely define melatonin onset and offset phases; (2) melatonin is a reliable and stable neuroendocrine output of the circadian clock (versus behavioral output which is sensitive to stress or other factors); (3) melatonin measurements can be performed extremely frequently, permitting high temporal resolution (10 min sampling intervals), which allows detection of slight changes in phase; (4) the measurements can be performed for more than four weeks, allowing perturbations of the circadian clock to be followed long-term in the same animals; (5) this is an automated process (microdialysis coupled with on-line HPLC analysis), which increases accuracy and bypasses the labor-intensive and error-prone manual handling of dialysis samples; and (6) our approach allows real-time investigation of circadian rhythm function and permits appropriate timely adjustments of experimental conditions. The longevity of microdialysis probes, the key to the success of this approach, depends at least in part on the methods of the construction and implantation of dialysis probes. In this article, we have detailed the procedures of construction and surgical implantation of microdialysis probes used currently in our laboratory, which are significantly improved from our previous methods.


Journal of Pineal Research | 2009

Posttranscriptional regulation of pineal melatonin synthesis in Octodon degus

Soo Jung Lee; Tiecheng Liu; Asamanja Chattoraj; Samantha L. Zhang; Lijun Wang; Theresa M. Lee; Michael M. Wang; Jimo Borjigin

Abstract:  Small laboratory animals have provided significant information about melatonin regulation, yet most of these organisms are nocturnal and regulate melatonin synthesis by mechanisms that diverge from those of humans. For example, in all rodents examined, melatonin secretion occurs with a time lag of several hours after the onset of darkness; in addition, arylalkylamine N‐acetyltransferase (AANAT), the key enzyme in melatonin synthesis, displays dynamic transcriptional activation specifically at night in all rodents studied to date. In ungulates and primates including humans, on the other hand, melatonin secretion occurs immediately during the early night and is controlled by circadian posttranscriptional regulation of AANAT. We hypothesize that the diurnal Octodon degus (an Hystricognath rodent) could serve as an improved experimental model for studies of human melatonin regulation. To test this, we monitored melatonin production in degus using pineal microdialysis and characterized the regulation of melatonin synthesis by analyzing degu Aanat. Degu pineal melatonin rises with little latency at night, as in ungulates and primates. In addition, degu Aanat mRNA expression displays no detectable diurnal variation, suggesting that, like ungulates and primates, melatonin in this species is regulated by a posttranscriptional mechanism. Compared with AANAT from all rodents examined to date, the predicted amino acid sequence of degu AANAT is phylogenetically more closely related to ungulate and primate AANAT. These data suggest that Octodon degus may provide an ideal model system for laboratory investigation of mechanisms of melatonin synthesis and secretion in diurnal mammals.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Asphyxia-activated corticocardiac signaling accelerates onset of cardiac arrest

Duan Li; Omar S. Mabrouk; Tiecheng Liu; Fangyun Tian; Gang Xu; Santiago Rengifo; Sarah J. Choi; Abhay Mathur; Charles P. Crooks; Robert T. Kennedy; Michael M. Wang; Hamid Ghanbari; Jimo Borjigin

Significance How does the heart of a healthy individual cease to function within just a few minutes in the absence of oxygen? We addressed this issue by simultaneously examining the heart and the brain in animal models during asphyxiation and found that asphyxia markedly stimulates neurophysiological and neurochemical activities of the brain. Furthermore, previously unidentified corticocardiac coupling showed increased intensity as the heart deteriorated. Blocking efferent input to the heart markedly increased survival time of both the heart and the brain. The results show that targeting the brain’s outflow may be an effective strategy to delay the death of the heart and the brain from asphyxia. The mechanism by which the healthy heart and brain die rapidly in the absence of oxygen is not well understood. We performed continuous electrocardiography and electroencephalography in rats undergoing experimental asphyxia and analyzed cortical release of core neurotransmitters, changes in brain and heart electrical activity, and brain–heart connectivity. Asphyxia stimulates a robust and sustained increase of functional and effective cortical connectivity, an immediate increase in cortical release of a large set of neurotransmitters, and a delayed activation of corticocardiac functional and effective connectivity that persists until the onset of ventricular fibrillation. Blocking the brain’s autonomic outflow significantly delayed terminal ventricular fibrillation and lengthened the duration of detectable cortical activities despite the continued absence of oxygen. These results demonstrate that asphyxia activates a brainstorm, which accelerates premature death of the heart and the brain.

Collaboration


Dive into the Tiecheng Liu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gang Xu

University of Michigan

View shared research outputs
Top Co-Authors

Avatar

He Meng

University of Michigan

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Duan Li

University of Michigan

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge