Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tien Van Truong is active.

Publication


Featured researches published by Tien Van Truong.


Journal of Bionic Engineering | 2012

Stable Vertical Takeoff of an Insect-Mimicking Flapping-Wing System Without Guide Implementing Inherent Pitching Stability

Hoang Vu Phan; Quoc Viet Nguyen; Quang Tri Truong; Tien Van Truong; Hoon Cheol Park; Nam Seo Goo; Doyoung Byun; Min Jun Kim

We briefly summarized how to design and fabricate an insect-mimicking flapping-wing system and demonstrate how to implement inherent pitching stability for stable vertical takeoff. The effect of relative locations of the Center of Gravity (CG) and the mean Aerodynamic Center (AC) on vertical flight was theoretically examined through static force balance consideration. We conducted a series of vertical takeoff tests in which the location of the mean AC was determined using an unsteady Blade Element Theory (BET) previously developed by the authors. Sequential images were captured during the takeoff tests using a high-speed camera. The results demonstrated that inherent pitching stability for vertical takeoff can be achieved by controlling the relative position between the CG and the mean AC of the flapping system.


Journal of the Royal Society Interface | 2013

Improvement of the aerodynamic performance by wing flexibility and elytra--hind wing interaction of a beetle during forward flight.

Tuyen Quang Le; Tien Van Truong; Soo Hyung Park; Tri Quang Truong; Jin Hwan Ko; Hoon Cheol Park; Doyoung Byun

In this work, the aerodynamic performance of beetle wing in free-forward flight was explored by a three-dimensional computational fluid dynamics (CFDs) simulation with measured wing kinematics. It is shown from the CFD results that twist and camber variation, which represent the wing flexibility, are most important when determining the aerodynamic performance. Twisting wing significantly increased the mean lift and camber variation enhanced the mean thrust while the required power was lower than the case when neither was considered. Thus, in a comparison of the power economy among rigid, twisting and flexible models, the flexible model showed the best performance. When the positive effect of wing interaction was added to that of wing flexibility, we found that the elytron created enough lift to support its weight, and the total lift (48.4 mN) generated from the simulation exceeded the gravity force of the beetle (47.5 mN) during forward flight.


Bioinspiration & Biomimetics | 2013

Aerodynamic forces and flow structures of the leading edge vortex on a flapping wing considering ground effect

Tien Van Truong; Doyoung Byun; Min Jun Kim; Kwang Joon Yoon; Hoon Cheol Park

The aim of this work is to provide an insight into the aerodynamic performance of the beetle during takeoff, which has been estimated in previous investigations. We employed a scaled-up electromechanical model flapping wing to measure the aerodynamic forces and the three-dimensional flow structures on the flapping wing. The ground effect on the unsteady forces and flow structures were also characterized. The dynamically scaled wing model could replicate the general stroke pattern of the beetles hind wing kinematics during takeoff flight. Two wing kinematic models have been studied to examine the influences of wing kinematics on unsteady aerodynamic forces. In the first model, the angle of attack is asymmetric and varies during the translational motion, which is the flapping motion of the beetles hind wing. In the second model, the angle of attack is constant during the translational motion. The instantaneous aerodynamic forces were measured for four strokes during the beetles takeoff by the force sensor attached at the wing base. Flow visualization provided a general picture of the evolution of the three-dimensional leading edge vortex (LEV) on the beetle hind wing model. The LEV is stable during each stroke, and increases radically from the root to the tip, forming a leading-edge spiral vortex. The force measurement results show that the vertical force generated by the hind wing is large enough to lift the beetle. For the beetle hind wing kinematics, the total vertical force production increases 18.4% and 8.6% for the first and second strokes, respectively, due to the ground effect. However, for the model with a constant angle of attack during translation, the vertical force is reduced during the first stroke. During the third and fourth strokes, the ground effect is negligible for both wing kinematic patterns. This finding suggests that the beetles flapping mechanism induces a ground effect that can efficiently lift its body from the ground during takeoff.


Journal of Bionic Engineering | 2012

Flexible Wing Kinematics of a Free-Flying Beetle (Rhinoceros Beetle Trypoxylus Dichotomus)

Tien Van Truong; Tuyen Quang Le; Doyoung Byun; Hoon Park; Min Jun Kim

Detailed 3-Dimensional (3D) wing kinematics was experimentally presented in free flight of a beetle, Trypoxylus dichotomus, which has a pair of elytra (forewings) and flexible hind wings. The kinematic parameters such as the wing tip trajectory, angle of attack and camber deformation were obtained from a 3D reconstruction technique that involves the use of two synchronized high-speed cameras to digitize various points marked on the wings. Our data showed outstanding characteristics of deformation and flexibility of the beetle’s hind wing compared with other measured insects, especially in the chordwise and spanwise directions during flapping motion. The hind wing produced 16% maximum positive camber deformation during the downstroke. It also experienced twisted shape showing large variation of the angle of attack from the root to the tip during the upstroke.


Journal of Bionic Engineering | 2014

How Could Beetle's Elytra Support Their Own Weight during Forward Flight?

Tuyen Quang Le; Tien Van Truong; Hieu Trung Tran; Soo Hyung Park; Jin Hwan Ko; Hoon Cheol Park; Doyoung Byun

The aerodynamic role of the elytra during a beetle’s flapping motion is not well-elucidated, although it is well-recognized that the evolution of elytra has been a key in the success of coleopteran insects due to their protective function. An experimental study on wing kinematics reveals that for almost concurrent flapping with the hind wings, the flapping angle of the elytra is 5 times smaller than that of the hind wings. Then, we explore the aerodynamic forces on elytra in free forward flight with and without an effect of elytron-hind wing interaction by three-dimensional numerical simulation. The numerical results show that vertical force generated by the elytra without interaction is not sufficient to support even its own weight. However, the elytron-hind wing interaction improves the vertical force on the elytra up to 80%; thus, the total vertical force could fully support its own weight. The interaction slightly increases the vertical force on the hind wind by 6% as well.


Journal of Bionic Engineering | 2012

Flow visualization of rhinoceros beetle ( Trypoxylus dichotomus ) in free flight

Tien Van Truong; Tuyen Quang Le; Hieu Trung Tran; Hoon Cheol Park; Kwang Joon Yoon; Doyoung Byun

Aerodynamic characteristics of the beetle, Trypoxylus dichotomus, which has a pair of elytra (forewings) and flexible hind wings, are investigated. Visualization experiments were conducted for various flight conditions of a beetle, Trypoxylus dichotomus: free, tethered, hovering, forward and climbing flights. Leading edge, trailing edge and tip vortices on both wings were observed clearly. The leading edge vortex was stable and remained on the top surface of the elytron for a wide interval during the downstroke of free forward flight. Hence, the elytron may have a considerable role in lift force generation of the beetle. In addition, we reveal a suction phenomenon between the gaps of the hind wing and the elytron in upstroke that may improve the positive lift force on the hind wing. We also found the reverse clap-fling mechanism of the T. dichotomus beetle in hovering flight. The hind wings touch together at the beginning of the upstroke. The vortex generation, shedding and interaction give a better understanding of the detailed aerodynamic mechanism of beetle flight.


Journal of Bionic Engineering | 2014

Non-Jumping Take off Performance in Beetle Flight (Rhinoceros Beetle Trypoxylus dichotomus)

Tien Van Truong; Tuyen Quang Le; Hoon Cheol Park; Kwang Joon Yoon; Min Jun Kim; Doyoung Byun

In recent decades, the take-off mechanisms of flying animals have received much attention in insect flight initiation. Most of previous works have focused on the jumping mechanism, which is the most common take-off mechanism found in flying animals. Here, we presented that the rhinoceros beetle, Trypoxylus dichotomus, takes off without jumping. In this study, we used 3-Dimensional (3D) high-speed video techniques to quantitatively analyze the wings and body kinematics during the initiation periods of flight. The details of the flapping angle, angle of attack of the wings and the roll, pitch and yaw angles of the body were investigated to understand the mechanism of take-off in T. dichotomus. The beetle took off gradually with a small velocity and small acceleration. The body kinematic analyses showed that the beetle exhibited stable take-off. To generate high lift force, the beetle modulated its hind wing to control the angle of attack; the angle of attack was large during the upstroke and small during the downstroke. The legs of beetle did not contract and strongly release like other insects. The hind wing could be considered as a main source of lift for heavy beetle.


Journal of Bionic Engineering | 2013

Two- and Three-Dimensional Simulations of Beetle Hind Wing Flapping during Free Forward Flight

Tuyen Quang Le; Tien Van Truong; Hieu Trung Tran; Soo Hyung Park; Jin Hwan Ko; Hoon Cheol Park; Kwang Joon Yoon; Doyoung Byun

Aerodynamic characteristic of the beetle, Trypoxylus dichotomus, which has a pair of elytra (forewings) and hind wings, is numerically investigated. Based on the experimental results of wing kinematics, two-dimensional (2D) and three-dimensional (3D) computational fluid dynamic simulations were carried out to reveal aerodynamic performance of the hind wing. The roles of the spiral Leading Edge Vortex (LEV) and the spanwise flow were clarified by comparing 2D and 3D simulations. Mainly due to pitching down of chord line during downstroke in highly inclined stroke plane, relatively high averaged thrust was produced in the free forward flight of the beetle. The effects of the local corrugation and the camber variation were also investigated for the beetle’s hind wings. Our results show that the camber variation plays a significant role in improving both lift and thrust in the flapping. On the other hand, the local corrugation pattern has no significant effect on the aerodynamic force due to large angle of attack during flapping.


Bioinspiration & Biomimetics | 2012

Flight behavior of the rhinoceros beetle Trypoxylus dichotomus during electrical nerve stimulation

Tien Van Truong; Doyoung Byun; Laura Corley Lavine; Douglas J. Emlen; Hoon Cheol Park; Min Jun Kim

Neuronal stimulation is an intricate part of understanding insect flight behavior and control insect itself. In this study, we investigated the effects of electrical pulses applied to the brain and basalar muscle of the rhinoceros beetle (Trypoxylus dichotomus). To understand specific neuronal stimulation mechanisms, responses and flight behavior of the beetle, four electrodes were implanted into the two optic lobes, the brains central complex and the ventral nerve cord in the posterior pronotum. We demonstrated flight initiation, turning and cessation by stimulating the brain. The change undergone by the wing flapping in response to the electrical signal was analyzed from a sequence of images captured by a high-speed camera. Here, we provide evidence to distinguish the important differences between neuronal and muscular flight stimulations in beetles. We found that in the neural potential stimulation, both the hind wing and the elytron were suppressed. Interestingly, the beetle stopped flying whenever a stimulus potential was applied between the pronotum and one side of the optic lobe, or between the ventral nerve cord in the posterior pronotum and the central complex. In-depth experimentation demonstrated the effective of neural stimulation over muscle stimulation for flight control. During electrical stimulation of the optic lobes, the beetle performed unstable flight, resulting in alternating left and right turns. By applying the electrical signal into both the optic lobes and the central complex of the brain, we could precisely control the direction of the beetle flight. This work provides an insight into insect flight behavior for future development of insect-micro air vehicle.


Bioinspiration & Biomimetics | 2017

Experimental and numerical studies of beetle-inspired flapping wing in hovering flight

Tien Van Truong; Tuyen Quang Le; Hoon Cheol Park; Doyoung Byun

In this paper, we measure unsteady forces and visualize 3D vortices around a beetle-like flapping wing model in hovering flight by experiment and numerical simulation. The measurement of unsteady forces and flow patterns around the wing were conducted using a dynamically scaled wing model in the mineral-oil tank. The wing kinematics were directly derived from the experiment of a real beetle. The 3D flow structures of the flapping wing were captured by using air bubble visualization while forces were measured by a sensor attached at the wing base. In comparison, the size and topology of spiral leading edge vortex, trailing edge vortex and tip vortex are well matched from experimental and numerical studies. In addition, the time history of forces calculated from numerical simulation is also similar to that from theforce measurement. A difference of average force is in order of 10 percent. The results indicate that the leading edge vortex due to rotational acceleration at the end of the stroke during flapping wing causes significant reduction of lift. The present study provides useful information on hover flight to develop a beetle-like flapping wing Micro Air Vehicle.

Collaboration


Dive into the Tien Van Truong's collaboration.

Top Co-Authors

Avatar

Doyoung Byun

Sungkyunkwan University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Min Jun Kim

Southern Methodist University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge