Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tiezhi Zhang is active.

Publication


Featured researches published by Tiezhi Zhang.


Medical Physics | 2003

Application of the spirometer in respiratory gated radiotherapy

Tiezhi Zhang; Harry Keller; Matthew J. O'Brien; T Mackie; Bhudatt R. Paliwal

The signal from a spirometer is directly correlated with respiratory motion and is ideal for target respiratory motion tracking. However, its susceptibility to signal drift deters its application in radiotherapy. In this work, a few approaches are investigated to control spirometer signal drift for a Bernoulli-type spirometer. A method is presented for rapid daily calibration of the spirometer to obtain a flow sensitivity function. Daily calibration assures accurate airflow measurement and also reduces signal drift. Dynamic baseline adjustment further controls the signal drift. The accuracy of these techniques was studied and it was found that the spirometer is able to provide a long-term drift-free breathing signal. The tracking error is comprised of two components: calibration error and stochastic signal baseline variation error. The calibration error is very small (1% of 3 l) and therefore negligible. The stochastic baseline variation error can be as large as 20% of the normal breathing amplitude. In view of these uncertainties, the applications of spirometers in treatment techniques that rely on breathing monitoring are discussed. Spirometer-based monitoring is noted most suitable for deep inspiration breath-hold but less important for free breathing gating techniques.


Medical Physics | 2004

Treatment plan optimization incorporating respiratory motion.

Tiezhi Zhang; R Jeraj; Harry Keller; Weiguo Lu; Gustavo H. Olivera; Todd McNutt; T Mackie; Bhudatt R. Paliwal

Similar to conventional conformal radiotherapy, during lung tomotherapy, a motion margin has to be set for respiratory motion. Consequently, large volume of normal tissue is irradiated by intensive radiation. To solve this problem, we have developed a new motion mitigation method by incorporating target motion into treatment optimization. In this method, the delivery-breathing correlation is determined prior to treatment plan optimization. Beamlets are calculated by using the CT images at the corresponding breathing phases from a dynamic (four-dimensional) image sequence. With the displacement vector fields at different breathing phases, a set of deformed beamlets is obtained by mapping the dose to the primary phase. Optimization incorporating motion is then performed by using the deformed beamlets obtained by dose mapping. During treatment delivery, the same breathing-delivery correlation can be reproduced by instructing the patient to breathe following a visually displayed guiding cycle. This method was tested using a computer-simulated deformable phantom and a real lung case. Results show that treatment optimization incorporating motion achieved similar high dose conformality on a mobile target compared with static delivery. The residual motion effects due to imperfect breathing tracking were also analyzed.


Medical Physics | 2004

Technical note: A novel boundary condition using contact elements for finite element based deformable image registration

Tiezhi Zhang; Nigel P. Orton; T. Rockwell Mackie; Bhudatt R. Paliwal

Deformable image registration is an important tool for image-guided radiotherapy. Physics-model-based deformable image registration using finite element analysis is one of the methods currently being investigated. The calculation accuracy of finite element analysis is dependent on given boundary conditions, which are usually based on the surface matching of the organ in two images. Such a surface matching, however, is hard to obtain from medical images. In this study, we developed a new boundary condition to circumvent the traditional difficulties. Finite element contact-impact analysis was employed to simulate the interaction between the organ of interest and the surrounding body. The displacement loading is not necessarily specified. The algorithm automatically deforms the organ model into the minimum internal energy state. The analysis was performed on CT images of the lung at two different breathing phases (exhalation and full inhalation). The result gave the displacement vector map inside the lung. Validation of the result showed satisfactory agreement in most parts of the lung. This approach is simple, operator independent and may provide improved accuracy of the prediction of organ deformation.


Radiotherapy and Oncology | 2009

Comparison of various online IGRT strategies: The benefits of online treatment plan re-optimization

Derek Schulze; Jian Liang; Di Yan; Tiezhi Zhang

PURPOSE To compare the dosimetric differences of various online IGRT strategies and to predict potential benefits of online re-optimization techniques in prostate cancer radiation treatments. MATERIALS AND METHODS Nine prostate patients were recruited in this study. Each patient has one treatment planning CT images and 10-treatment day CT images. Five different online IGRT strategies were evaluated which include 3D conformal with bone alignment, 3D conformal re-planning via aperture changes, intensity modulated radiation treatment (IMRT) with bone alignment, IMRT with target alignment and IMRT daily re-optimization. Treatment planning and virtual treatment delivery were performed. The delivered doses were obtained using in-house deformable dose mapping software. The results were analyzed using equivalent uniform dose (EUD). RESULTS With the same margin, rectum and bladder doses in IMRT plans were about 10% and 5% less than those in CRT plans, respectively. Rectum and bladder doses were reduced as much as 20% if motion margin is reduced by 1cm. IMRT is more sensitive to organ motion. Large discrepancies of bladder and rectum doses were observed compared to the actual delivered dose with treatment plan predication. The therapeutic ratio can be improved by 14% and 25% for rectum and bladder, respectively, if IMRT online re-planning is employed compared to the IMRT bone alignment approach. The improvement of target alignment approach is similar with 11% and 21% dose reduction to rectum and bladder, respectively. However, underdosing in seminal vesicles was observed on certain patients. CONCLUSIONS Online treatment plan re-optimization may significantly improve therapeutic ratio in prostate cancer treatments mostly due to the reduction of PTV margin. However, for low risk patient with only prostate involved, online target alignment IMRT treatment would achieve similar results as online re-planning. For all IGRT approaches, the delivered organ-at-risk doses may be significantly different from treatment planning prediction.


Medical Physics | 2005

On the automated definition of mobile target volumes from 4D‐CT images for stereotactic body radiotherapy

Tiezhi Zhang; Nigel P. Orton; Wolfgang A. Tomé

Stereotactic body radiotherapy (SBRT) can be used to treat small lesions in the chest. A vacuum-based immobilization system is used in our clinic for SBRT, and a motion envelope is used in treatment planning. The purpose of this study is to automatically derive motion envelopes using deformable image registration of 4D-CT images, and to assess the effect of abdominal pressure on the motion envelopes. 4D-CT scans at ten phases were acquired prior to treatment for both free and restricted breathing using a vacuum-based immobilization system that includes an abdominal pressure pillow. To study the stability of the motion envelope over the course of treatment, a mid-treatment 4D-CT scan was obtained after delivery of the third fraction for two patients. The planning target volume excluding breathing motion (PTV(ex)) was defined on the image set at full exhalation phase and transformed into all other phases using displacement maps from deformable image registration. The motion envelope was obtained as the union of PTV(ex) masks of all phases. The ratios of the motion envelope to PTV(ex) volume ranged from 1.3 to 2.5. When pressure was applied, the ratios were reduced by as much as 29% compared to free breathing for some patients, but increased by up to 9% for others. The abdominal pressure pillow has more motion restriction effects on the anterior/inferior region of the lung. For one of the two patients for whom the 4D-CT scan was repeated at mid-treatment, the motion envelope was reproducible. However, for the other patient the tumor location and lung motion pattern significantly changed due to changes in the anatomy surrounding the tumor during the course of treatment, indicating that an image-guided approach to SBRT may increase the efficacy of this treatment.


Medical Physics | 2006

Clinical implementation of target tracking by breathing synchronized delivery

D Tewatia; Tiezhi Zhang; Wolfgang A. Tomé; Bhudatt R. Paliwal; Minesh Metha

Target-tracking techniques can be categorized based on the mechanism of the feedback loop. In real time tracking, breathing-delivery phase correlation is provided to the treatment delivery hardware. Clinical implementation of target tracking in real time requires major hardware modifications. In breathing synchronized delivery (BSD), the patient is guided to breathe in accordance with target motion derived from four-dimensional computed tomography (4D-CT). Violations of mechanical limitations of hardware are to be avoided at the treatment planning stage. Hardware modifications are not required. In this article, using sliding window IMRT delivery as an example, we have described step-by-step the implementation of target tracking by the BSD technique: (1) A breathing guide is developed from patients normal breathing pattern. The patient tries to reproduce this guiding cycle by following the display in the goggles; (2) 4D-CT scans are acquired at all the phases of the breathing cycle; (3) The average tumor trajectory is obtained by deformable image registration of 4D-CT datasets and is smoothed by Fourier filtering; (4) Conventional IMRT planning is performed using the images at reference phase (full exhalation phase) and a leaf sequence based on optimized fluence map is generated; (5) Assuming the patient breathes with a reproducible breathing pattern and the machine maintains a constant dose rate, the treatment process is correlated with the breathing phase; (6) The instantaneous average tumor displacement is overlaid on the dMLC position at corresponding phase; and (7) DMLC leaf speed and acceleration are evaluated to ensure treatment delivery. A custom-built mobile phantom driven by a computer-controlled stepper motor was used in the dosimetry verification. A stepper motor was programmed such that the phantom moved according to the linear component of tumor motion used in BSD treatment planning. A conventional plan was delivered on the phantom with and without motion. The BSD plan was also delivered on the phantom that moved with the prescheduled pattern and synchronized with the delivery of each beam. Film dosimetry showed underdose and overdose in the superior and inferior regions of the target, respectively, if the tumor motion is not compensated during the delivery. BSD delivery resulted in a dose distribution very similar to the planned treatments.


International Journal of Radiation Oncology Biology Physics | 2009

Cumulative lung dose for several motion management strategies as a function of pretreatment patient parameters.

G. Hugo; Jonathon P. Campbell; Tiezhi Zhang; Di Yan

PURPOSE To evaluate patient parameters that may predict for relative differences in cumulative four-dimensional (4D) lung dose among several motion management strategies. METHODS AND MATERIALS Deformable image registration and dose accumulation were used to generate 4D treatment plans for 18 patients with 4D computed tomography scans. Three plans were generated to simulate breath hold at normal inspiration, target tracking with the beam aperture, and mid-ventilation aperture (control of the target at the mean daily position and application of an iteratively computed margin to compensate for respiration). The relative reduction in mean lung dose (MLD) between breath hold and mid-ventilation aperture (DeltaMLD(BH)) and between target tracking and mid-ventilation aperture (DeltaMLD(TT)) was calculated. Associations between these two variables and parameters of the lesion (excursion, size, location, and deformation) and dose distribution (local dose gradient near the target) were also calculated. RESULTS The largest absolute and percentage differences in MLD were 1.0 Gy and 21.5% between breath hold and mid-ventilation aperture. DeltaMLD(BH) was significantly associated (p < 0.05) with tumor excursion. The DeltaMLD(TT) was significantly associated with excursion, deformation, and local dose gradient. A linear model was constructed to represent DeltaMLD vs. excursion. For each 5 mm of excursion, target tracking reduced the MLD by 4% compared with the results of a mid-ventilation aperture plan. For breath hold, the reduction was 5% per 5 mm of excursion. CONCLUSIONS The relative difference in MLD among different motion management strategies varied with patient and tumor characteristics for a given dosimetric target coverage. Tumor excursion is useful to aid in stratifying patients according to appropriate motion management strategies.


Medical Physics | 2011

A tetrahedron beam computed tomography benchtop system with a multiple pixel field emission x-ray tube.

Xiaochao Xu; J Kim; P Laganis; Derek Schulze; Yongguang Liang; Tiezhi Zhang

PURPOSE To demonstrate the feasibility of Tetrahedron Beam Computed Tomography (TBCT) using a carbon nanotube (CNT) multiple pixel field emission x-ray (MPFEX) tube. METHODS A multiple pixel x-ray source facilitates the creation of novel x-ray imaging modalities. In a previous publication, the authors proposed a Tetrahedron Beam Computed Tomography (TBCT) imaging system which comprises a linear source array and a linear detector array that are orthogonal to each other. TBCT is expected to reduce scatter compared with Cone Beam Computed Tomography (CBCT) and to have better detector performance. Therefore, it may produce improved image quality for image guided radiotherapy. In this study, a TBCT benchtop system has been developed with an MPFEX tube. The tube has 75 CNT cold cathodes, which generate 75 x-ray focal spots on an elongated anode, and has 4 mm pixel spacing. An in-house-developed, 5-row CT detector array using silicon photodiodes and CdWO(4) scintillators was employed in the system. Hardware and software were developed for tube control and detector data acquisition. The raw data were preprocessed for beam hardening and detector response linearity and were reconstructed with an FDK-based image reconstruction algorithm. RESULTS The focal spots were measured at about 1 × 2 mm(2) using a star phantom. Each cathode generates around 3 mA cathode current with 2190 V gate voltage. The benchtop system is able to perform TBCT scans with a prolonged scanning time. Images of a commercial CT phantom were successfully acquired. CONCLUSIONS A prototype system was developed, and preliminary phantom images were successfully acquired. MPFEX is a promising x-ray source for TBCT. Further improvement of tube output is needed in order for it to be used in clinical TBCT systems.


Journal of Applied Clinical Medical Physics | 2016

Commissioning and initial experience with the first clinical gantry-mounted proton therapy system

T Zhao; B Sun; K Grantham; L Rankine; Bin Cai; S Goddu; L Santanam; N Knutson; Tiezhi Zhang; Michael P. Reilly; Beth Bottani; Jeffrey D. Bradley; Sasa Mutic; Eric E. Klein

The purpose of this study is to describe the comprehensive commissioning process and initial clinical experience of the Mevion S250 proton therapy system, a gantry‐mounted, single‐room proton therapy platform clinically implemented in the S. Lee Kling Proton Therapy Center at Barnes‐Jewish Hospital in St. Louis, MO, USA. The Mevion S250 system integrates a compact synchrocyclotron with a C‐inner gantry, an image guidance system and a 6D robotic couch into a beam delivery platform. We present our commissioning process and initial clinical experience, including i) CT calibration; ii) beam data acquisition and machine characteristics; iii) dosimetric commissioning of the treatment planning system; iv) validation through the Imaging and Radiation Oncology Core credentialing process, including irradiations on the spine, prostate, brain, and lung phantoms; v) evaluation of localization accuracy of the image guidance system; and vi) initial clinical experience. Clinically, the system operates well and has provided an excellent platform for the treatment of diseases with protons. PACS number(s): 87.55.ne, 87.56.bdThe purpose of this study is to describe the comprehensive commissioning process and initial clinical experience of the Mevion S250 proton therapy system, a gantry-mounted, single-room proton therapy platform clinically implemented in the S. Lee Kling Proton Therapy Center at Barnes-Jewish Hospital in St. Louis, MO, USA. The Mevion S250 system integrates a compact synchrocyclotron with a C-inner gantry, an image guidance system and a 6D robotic couch into a beam delivery platform. We present our commissioning process and initial clinical experience, including i) CT calibration; ii) beam data acquisition and machine characteristics; iii) dosimetric commissioning of the treatment planning system; iv) validation through the Imaging and Radiation Oncology Core credentialing process, including irradiations on the spine, prostate, brain, and lung phantoms; v) evaluation of localization accuracy of the image guidance system; and vi) initial clinical experience. Clinically, the system operates well and has provided an excellent platform for the treatment of diseases with protons. PACS number(s): 87.55.ne, 87.56.bd.


Medical Physics | 2005

TU‐C‐J‐6B‐03: Deformable Fusion of 4D PET Images

Tiezhi Zhang; R Pyzalski; C Jaskowiak; Wolfgang A. Tomé; T Mackie; B Paliwal

Purpose: PET images are useful in defining treatment targets. Removing distortion from respiratory motion in the PET images is of importance for gated or 4D radiation treatments. We developed a deformable fusion method to sum up the PET images at different phases. The motion-blurring-free PET images are obtained without the sacrifice of signal to noise ratio (SNR) or increase of scanning time. Method and Materials: A GE Discovery CT/PET scanner was interfaced with Varians RPM breathing tracking system. 4D CT and 4D PET images were correlated according to the breathing phases. Full exhalation phase was used as the planning phase. Deformable image registrations of the 4D CT images yielded the displacement maps of the lungs relative to the planning phase. PET images at each breathing phase were then warped into the planning phase using the displacement maps. Motion-blurring-free PET images were obtained by summing the warped PET images. Results: Gated PET images at each individual phase are very noisy. The uncertainty from intensity fluctuations compromises the motion reduction by gating the scan. PET images are too fuzzy to be directly used in elastic registration. Instead, we registered the 4D CT images. With regular patient breathing patterns, 4D CT images correlate with 4D PET images. Consequently, the displacement maps from registration of the 4D CT images can be used in warping the 4D PET. Image warping removed the motion distortion in the PET images. The summed images have reduced motion blurring and the same SNR as that of non-gated PET images. Conclusion: Deformable fusion of 4D PET images reduce the motion distortion in PET image and retain the SNR without increasing data acquisition time. The resultant PET images can be used in more accurate target definition in gated or 4D radiation treatments.

Collaboration


Dive into the Tiezhi Zhang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

J Kim

University of Rochester

View shared research outputs
Top Co-Authors

Avatar

Bhudatt R. Paliwal

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

B Sun

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sasa Mutic

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

T Zhao

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Deshan Yang

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

K Grantham

Washington University in St. Louis

View shared research outputs
Researchain Logo
Decentralizing Knowledge