Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tiffany A. Mathews is active.

Publication


Featured researches published by Tiffany A. Mathews.


Journal of Neuroscience Methods | 2004

Gene dose-dependent alterations in extraneuronal serotonin but not dopamine in mice with reduced serotonin transporter expression

Tiffany A. Mathews; Denise E. Fedele; Francesca M. Coppelli; Amy M. Avila; Dennis L. Murphy; Anne M. Andrews

Serotonin (5-HT) plays an integral regulatory role in mood, anxiety, cognition, appetite and aggressive behavior. Many therapeutic and illicit drugs that modulate these functions act at the serotonin transporter (SERT), thus a mouse model with reduced transporter expression was created to further investigate the effects of differential serotonin reuptake. In the present study, in vivo microdialysis was used to determine homeostatic alterations in extracellular 5-HT levels in unanesthetized SERT knockout mice. SERT(-/-) mice had significantly higher levels of basal dialysate 5-HT than SERT(+/+) mice in striatum and frontal cortex. In addition, although gene-specific increases in 5-HT were evident, neuroadaptive alterations in dialysate dopamine levels were not detected in striatum. Zero net flux microdialysis was utilized to further investigate alterations in extracellular 5-HT. Using this method, a gene dose-dependent increase in extraneuronal 5-HT was observed in striatum (2.8 +/- 1, 9.4 +/- 1 and 18 +/- 3 nM) and frontal cortex (1.4 +/- 0.4, 3.5 +/- 0.9 and 14 +/- 1 nM) in SERT(+/+), SERT(+/-) and SERT(-/-) mice, respectively. Potassium stimulation revealed greater depolarization-induced increases in striatal 5-HT but not dopamine in SERT(-/-) mice. Furthermore, dialysate 5-hydroxyindoleacetic acid (5-HIAA) levels were reduced in striatum in a gene dose-dependent manner, while DOPAC was unchanged in SERT knockout mice. Finally, determination of monoamine oxidase (MAO) activity revealed no significant differences in KM or Vmax of type-A or type-B isozymes indicating that alterations in SERT expression do not cause adaptive changes in the activities of these key catabolic enzymes. Overall, these results demonstrate that constitutive reductions in SERT are associated with increases in 5-HT in the extracellular signaling space in the absence of changes in dopamine neurochemistry. Furthermore, use of zero net flux microdialysis appears warranted in investigations of serotonergic synaptic function where modest changes in extracellular 5-HT are thought to occur in response to altered uptake.


Journal of Biological Chemistry | 2005

Age-dependent Motor Deficits and Dopaminergic Dysfunction in DJ-1 Null Mice

Linan Chen; Barbara Cagniard; Tiffany A. Mathews; Sara R. Jones; Hyun Chul Koh; Yunmin Ding; Paul M. Carvey; Zaodung Ling; Un Jung Kang; Xiaoxi Zhuang

Mutations in the DJ-1 gene were recently identified in an autosomal recessive form of early-onset familial Parkinson disease. Structural biology, biochemistry, and cell biology studies have suggested potential functions of DJ-1 in oxidative stress, protein folding, and degradation pathways. However, animal models are needed to determine whether and how loss of DJ-1 function leads to Parkinson disease. We have generated DJ-1 null mice with a mutation that resembles the large deletion mutation reported in patients. Our behavioral analyses indicated that DJ-1 deficiency led to age-dependent and task-dependent motoric behavioral deficits that are detectable by 5 months of age. Unbiased stereological studies did not find obvious dopamine neuron loss in 6-month- and 11-month-old mice. Neurochemical examination revealed significant changes in striatal dopaminergic function consisting of increased dopamine reuptake rates and elevated tissue dopamine content. These data represent the in vivo evidence that loss of DJ-1 function alters nigrostriatal dopaminergic function and produces motor deficits.


Journal of Neuroscience Methods | 2004

Exploring the relationship between serotonin and brain-derived neurotrophic factor: analysis of BDNF protein and extraneuronal 5-HT in mice with reduced serotonin transporter or BDNF expression.

Matthew E. Szapacs; Tiffany A. Mathews; Lino Tessarollo; W. Ernest Lyons; Laura A. Mamounas; Anne M. Andrews

Serotonin (5-HT) has been proposed to promote neuronal plasticity during the treatment of mood and anxiety disorders and following neurodegenerative insult by altering the expression of critical genes including brain-derived neurotrophic factor (BDNF). In this study, mice with constitutive reductions in the serotonin transporter (SERT) or BDNF were investigated to further assess the functional relationship between serotonin neurotransmission and BDNF expression. Using a modified extraction procedure and a commercial enzyme-linked immunosorbant assay, 50% decreases in BDNF protein in hippocampus, frontal cortex and brain stem were confirmed in 4-month-old mice lacking one copy of the BDNF gene (BDNF(+/-)). By contrast, 4-month-old male and female mice with partial (SERT(+/-)) or complete (SERT(-/-)) reductions in SERT expression showed no differences in BDNF protein levels compared to SERT(+/+) mice, although male SERT knockout mice of all genotypes had higher BDNF levels in hippocampus, frontal cortex, and brain stem than female animals. Microdialysis also was performed in BDNF(+/-) mice. In addition to other phenotypic aspects suggestive of altered serotonin neurotransmission, BDNF(+/-) mice show accelerated age-related degeneration of 5-HT forebrain innervation. Nevertheless, extracellular 5-HT levels determined by zero net flux microdialysis were similar between BDNF(+/+) and BDNF(+/-) mice in striatum and frontal cortex at 8-12 months of age. These data illustrate that a 50% decrease in BDNF does not appear to be sufficient to cause measurable changes in basal extracellular 5-HT concentrations and, furthermore, that constitutive reductions in SERT expression are not associated with altered BDNF protein levels at the ages and in the brain regions examined in this study.


Psychopharmacology | 2007

Effects of chronic alcohol exposure on dopamine uptake in rat nucleus accumbens and caudate putamen

Evgeny A. Budygin; Erik B. Oleson; Tiffany A. Mathews; Anna K. Läck; Marvin R. Diaz; Brian A. McCool; Sara R. Jones

RationaleExisting data strongly suggest that alcohol affects dopamine (DA) neurotransmission in the brain. However, many questions remain about the effects of alcohol on the delicate equilibrium between such neurochemical processes as DA release and uptake. Dysregulation of these processes in the mesolimbic and nigrostriatal systems after chronic alcohol ingestion could be a neuroadaptation contributing to dependence.ObjectivesIn the present study, we have employed an alcohol vapor inhalation model to characterize the effects of chronic alcohol exposure on DA dynamics in rat nucleus accumbens (NAc) and caudate putamen (CP) using fast-scan cyclic voltammetry (FSCV) in brain slices. This method provides a unique view of real-time, spatially resolved changes in DA concentration.ResultsWe found that chronic alcohol exposure enhanced DA uptake rates in rat NAc and CP. These changes would have the effect of down-regulating extracellular DA levels, presumably a compensatory effect related to increased DA release by repeated alcohol exposure. The sensitivity of terminal release-regulating DA autoreceptors was not different in alcohol-exposed rats compared with alcohol-naïve animals.ConclusionsThe DA uptake changes after chronic alcohol exposure documented here using FSCV may be associated with a compensatory response of the DA system aimed at decreasing DA signaling. Alterations in autoreceptor function may require relatively long lasting alcohol exposure.


The FASEB Journal | 2015

Developmental pesticide exposure reproduces features of attention deficit hyperactivity disorder.

Jason R. Richardson; Stuart L. Shalat; Thomas S. Guillot; W. Michael Caudle; Muhammad M. Hossain; Tiffany A. Mathews; Sara R. Jones; Deborah A. Cory-Slechta; Gary W. Miller

Attention‐deficit hyperactivity disorder (ADHD) is estimated to affect 8‐12% of school‐age children worldwide. ADHD is a complex disorder with significant genetic contributions. However, no single gene has been linked to a significant percentage of cases, suggesting that environmental factors may contribute to ADHD. Here, we used behavioral, molecular, and neurochemical techniques to characterize the effects of developmental exposure to the pyrethroid pesticide deltamethrin. We also used epidemiologic methods to determine whether there is an association between pyrethroid exposure and diagnosis of ADHD. Mice exposed to the pyrethroid pesticide deltamethrin during development exhibit several features reminiscent of ADHD, including elevated dopamine transporter (DAT) levels, hyperactivity, working memory and attention deficits, and impulsive‐like behavior. Increased DAT and D1 dopamine receptor levels appear to be responsible for the behavioral deficits. Epidemiologic data reveal that children aged 6‐15 with detectable levels of pyrethroid metabolites in their urine were more than twice as likely to be diagnosed with ADHD. Our epidemiologic finding, combined with the recapitulation of ADHD behavior in pesticide‐treated mice, provides a mechanistic basis to suggest that developmental pyrethroid exposure is a risk factor for ADHD.—Richardson, J. R., Taylor, M. M., Shalat, S. L., Guillot III, T. S., Caudle, W. M., Hossain, M. M., Mathews, T. A., Jones, S. R., Cory‐Slechta, D. A., Miller, G. W. Developmental pesticide exposure reproduces features of attention deficit hyperactivity disorder. FASEB J. 29, 1960‐1972 (2015). www.fasebj.org


Neurochemistry International | 2012

Conserved dorsal-ventral gradient of dopamine release and uptake rate in mice, rats and rhesus macaques.

Erin S. Calipari; Kimberly N. Huggins; Tiffany A. Mathews; Sara R. Jones

Although the vast majority of research on the dopamine system has been performed in rodents, and it is assumed that this work will inform us about the human condition, there have been very few direct comparisons of presynaptic dopamine terminal function across multiple species. Because it is difficult to query rapid sub-second dopamine signaling in humans using voltammetric methods, we chose to compare dopamine signals across multiple striatal subregions in slices from C57BL/6J mice, Sprague-Dawley rats and rhesus macaques. We found a dorsal to ventral gradient of dopamine uptake rates with highest levels in the dorsal striatum and lowest levels in the nucleus accumbens shell, which is conserved across species. In addition to uptake rates, there was also a dorsal to ventral, high to low, gradient in the magnitude of stimulated DA release observed in monkeys, mice, and rats. These data demonstrate that there is considerable functional homology across striatal regions in non-human primates and rodents, lending support to the use of rodents as model systems to study dopamine-related circuitry and disorders that are clinically relevant to the human population.


Journal of Neurochemistry | 2012

Aberrant striatal dopamine transmitter dynamics in brain-derived neurotrophic factor-deficient mice.

Kelly E. Bosse; Francis K. Maina; Johnna A. Birbeck; Joseph J. P. Roberts; Michelle L. Colombo; Tiffany A. Mathews

J. Neurochem. (2012) 120, 385–395.


Journal of Neuroscience Methods | 2011

Altered striatal dopamine release following a sub-acute exposure to manganese.

Madiha Khalid; Rabab A. Aoun; Tiffany A. Mathews

Certain metals that are necessary for regulating biological function at trace levels hold the potential to become neurotoxic when in excess. Specifically, chronic exposure to high levels of manganese leads to manganism, a neurological disorder that exhibits both motor and learning deficits similar to Parkinsons disease. Since Parkinsons disease symptomatology is primarily attributed to dopamine neurodegeneration in the striatum, dopamine system dysfunction has been implicated in the onset of manganism. In this study, dopamine system function in the dorsal striatum was evaluated in C57Bl/6 mice, 1, 7, and 21 days following repeated injections of manganese(II) chloride (50 mg/kg, subcutaneous) intermittently for 7 days. Tissue content analysis confirmed the presence of persistent accumulation of manganese in the striatum up to 21 days after cessation of treatment. In vitro fast scan cyclic voltammetry examined the effect of sub-acute manganese on electrically stimulated dopamine release and uptake in the striatum. While no difference was observed in uptake rates following manganese treatment, dopamine release was attenuated on days 7 and 21, compared to control levels. Basal levels of extracellular dopamine determined by the zero net flux microdialysis method were significantly lower in manganese-treated mice at 7 days post-treatment. On the other hand, potassium stimulated increases in extracellular dopamine were attenuated at all three time points. Together, these findings indicate that repeated manganese exposure has long-term effects on the regulation of exocytotic dopamine release in the striatum, which may be involved in the mechanism underlying manganese toxicity.


PLOS ONE | 2013

Greater ethanol-induced locomotor activation in DBA/2J versus C57BL/6J mice is not predicted by presynaptic striatal dopamine dynamics.

Jamie H. Rose; Erin S. Calipari; Tiffany A. Mathews; Sara R. Jones

A large body of research has aimed to determine the neurochemical factors driving differential sensitivity to ethanol between individuals in an attempt to find predictors of ethanol abuse vulnerability. Here we find that the locomotor activating effects of ethanol are markedly greater in DBA/2J compared to C57BL/6J mice, although it is unclear as to what neurochemical differences between strains mediate this behavior. Dopamine elevations in the nucleus accumbens and caudate-putamen regulate locomotor behavior for most drugs, including ethanol; thus, we aimed to determine if differences in these regions predict strain differences in ethanol-induced locomotor activity. Previous studies suggest that ethanol interacts with the dopamine transporter, potentially mediating its locomotor activating effects; however, we found that ethanol had no effects on dopamine uptake in either strain. Ex vivo voltammetry allows for the determination of ethanol effects on presynaptic dopamine terminals, independent of drug-induced changes in firing rates of afferent inputs from either dopamine neurons or other neurotransmitter systems. However, differences in striatal dopamine dynamics did not predict the locomotor-activating effects of ethanol, since the inhibitory effects of ethanol on dopamine release were similar between strains. There were differences in presynaptic dopamine function between strains, with faster dopamine clearance in the caudate-putamen of DBA/2J mice; however, it is unclear how this difference relates to locomotor behavior. Because of the role of the dopamine system in reinforcement and reward learning, differences in dopamine signaling between the strains could have implications for addiction-related behaviors that extend beyond ethanol effects in the striatum.


Analytical Chemistry | 2013

Simultaneous detection of monoamine and purine molecules using high-performance liquid chromatography with a boron-doped diamond electrode.

Johnna A. Birbeck; Tiffany A. Mathews

A recently available boron-doped diamond (BDD) working electrode has been developed for use with high-performance liquid chromatography (HPLC) to aid in the detection of molecules with high redox potentials. In this work, we developed a method using a commercially available BDD working electrode for detecting neurotransmitters from two different families with large oxidation potential differences, namely, dopamine (DA) and adenosine (Ado). Hydrodynamic voltammograms were constructed for DA and Ado, and the optimal potentials for the detection of DA and Ado were determined to be +740 and +1200 mV versus a palladium reference electrode, respectively. A working potential of +840 mV was chosen, and the detection range achieved with the BDD electrode for DA and Ado was from low nanomolar to high millimolar levels. To determine the practical function of the BDD electrode, tissue content was analyzed for seven monoamine and two purine molecules, which were resolved in a single run in less than 28 min. Our results demonstrate that the BDD electrode is sensitive and robust enough to detect monoamine and purine molecules from frontal cortex and striatal mouse samples. Using a BDD electrode opens the possibility of exploring multiple classes of neurotransmitters in a single run using electrochemical detection to probe their interactions.

Collaboration


Dive into the Tiffany A. Mathews's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge