Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tiffany E. Choe is active.

Publication


Featured researches published by Tiffany E. Choe.


Investigative Ophthalmology & Visual Science | 2011

Deformation of the rodent optic nerve head and peripapillary structures during acute intraocular pressure elevation.

Brad Fortune; Tiffany E. Choe; Juan Reynaud; Christine Hardin; Grant Cull; C. F. Burgoyne; Lin Wang

PURPOSE. To evaluate the effect of acutely elevated intraocular pressure (IOP) on retinal thickness and optic nerve head (ONH) structure in the rat eye by spectral domain-optical coherence tomography (SD-OCT). METHODS. Fourteen adult male Brown-Norway rats were studied under anesthesia (ketamine/xylazine/acepromazine, 55:5:1 mg/kg intramuscularly). Both eyes were imaged by SD-OCT on two baseline occasions several weeks before and again 2 and 4 weeks after the acute IOP imaging session. During the acute IOP session, SD-OCT imaging was performed 10 minutes after IOP was manometrically set at 15 mm Hg and then at 10, 30, and 60 minutes after IOP had been elevated to 50 mm Hg (n = 8) and again 10 and 30 minutes after IOP had been lowered back to 15 mm Hg (recovery). In two additional groups, IOP elevation was set to 70 mm Hg (n = 4) or 40 mm Hg (n = 2). Acute IOP results are reported for a pattern of 49 horizontal B-scans spanning a 20° square and follow-up results for peripapillary circular B-scans. Retinal and retinal nerve fiber layer (RNFL) thicknesses were measured with custom software by manual image segmentation. Friedman and Dunns tests were used to assess acute and longer-term effects of acute IOP elevation. RESULTS. Acute IOP elevation to 50 mm Hg caused rapid (within seconds) deformation of the ONH and peripapillary structures, including posterior displacement of the ONH surface and outward bowing of peripapillary tissue; retinal thickness decreased progressively from 10 to 30 to 60 minutes by 16%, 18%, and 20% within the area of Bruchs membrane opening (BMO; P < 0.0001) by 8%, 9%, and 11% within the central 10° (excluding the BMO; P < 0.0001) but only by 1%, 2%, and 2.4% beyond the central 10° (P < 0.0001). Recovery was progressive and nearly complete by 30 minutes. Acute IOP elevation to 40 and 70 mm Hg produced similar structural changes, but 70 mm Hg also interfered with retinal blood flow. There were no changes in peripapillary retinal or RNFL thickness (P = 0.08 and P = 0.16, respectively) measured 2 and 4 weeks after acute elevation to 50 mm Hg. CONCLUSIONS. Acute IOP elevation in the rodent eye causes rapid, reversible posterior deformation of the ONH and thinning of the peripapillary retina, with only minimal retinal thinning beyond 5° of the ONH. No permanent changes in peripapillary retinal or RNFL thickness (for up to 1 month of follow-up) were caused by 60 minutes of IOP elevation to 50 mm Hg.


Investigative Ophthalmology & Visual Science | 2014

Evaluation of Retinal Nerve Fiber Layer Thickness and Axonal Transport 1 and 2 Weeks After 8 Hours of Acute Intraocular Pressure Elevation in Rats

Carla J. Abbott; Tiffany E. Choe; Theresa A. Lusardi; C. F. Burgoyne; Lin Wang; Brad Fortune

PURPOSE To compare in vivo retinal nerve fiber layer thickness (RNFLT) and axonal transport at 1 and 2 weeks after an 8-hour acute IOP elevation in rats. METHODS Forty-seven adult male Brown Norway rats were used. Procedures were performed under anesthesia. The IOP was manometrically elevated to 50 mm Hg or held at 15 mm Hg (sham) for 8 hours unilaterally. The RNFLT was measured by spectral-domain optical coherence tomography. Anterograde and retrograde axonal transport was assessed from confocal scanning laser ophthalmoscopy imaging 24 hours after bilateral injections of 2 μL 1% cholera toxin B-subunit conjugated to AlexaFluor 488 into the vitreous or superior colliculi, respectively. Retinal ganglion cell (RGC) and microglial densities were determined using antibodies against Brn3a and Iba-1. RESULTS The RNFLT in experimental eyes increased from baseline by 11% at 1 day (P < 0.001), peaked at 19% at 1 week (P < 0.0001), remained 11% thicker at 2 weeks (P < 0.001), recovered at 3 weeks (P > 0.05), and showed no sign of thinning at 6 weeks (P > 0.05). There was no disruption of anterograde transport at 1 week (superior colliculi fluorescence intensity, 75.3 ± 7.9 arbitrary units [AU] for the experimental eyes and 77.1 ± 6.7 AU for the control eyes) (P = 0.438) or 2 weeks (P = 0.188). There was no obstruction of retrograde transport at 1 week (RCG density, 1651 ± 153 per mm(2) for the experimental eyes and 1615 ± 135 per mm(2) for the control eyes) (P = 0.63) or 2 weeks (P = 0.25). There was no loss of Brn3a-positive RGC density at 6 weeks (P = 0.74) and no increase in microglial density (P = 0.92). CONCLUSIONS Acute IOP elevation to 50 mm Hg for 8 hours does not cause a persisting axonal transport deficit at 1 or 2 weeks or a detectable RNFLT or RGC loss by 6 weeks but does lead to transient RNFL thickening that resolves by 3 weeks.


Biomedical Optics Express | 2013

Imaging axonal transport in the rat visual pathway

Carla J. Abbott; Tiffany E. Choe; Theresa A. Lusardi; C. F. Burgoyne; Lin Wang; Brad Fortune

A technique was developed for assaying axonal transport in retinal ganglion cells using 2 µl injections of 1% cholera toxin b-subunit conjugated to AlexaFluor488 (CTB). In vivo retinal and post-mortem brain imaging by confocal scanning laser ophthalmoscopy and post-mortem microscopy were performed. The transport of CTB was sensitive to colchicine, which disrupts axonal microtubules. The bulk rates of transport were determined to be approximately 80–90 mm/day (anterograde) and 160 mm/day (retrograde). Results demonstrate that axonal transport of CTB can be monitored in vivo in the rodent anterior visual pathway, is dependent on intact microtubules, and occurs by active transport mechanisms.


PLOS ONE | 2014

Comparison of Longitudinal In Vivo Measurements of Retinal Nerve Fiber Layer Thickness and Retinal Ganglion Cell Density after Optic Nerve Transection in Rat

Tiffany E. Choe; Carla J. Abbott; Chelsea Piper; Lin Wang; Brad Fortune

Purpose To determine the relationship between longitudinal in vivo measurements of retinal nerve fiber layer thickness (RNFLT) and retinal ganglion cell (RGC) density after unilateral optic nerve transection (ONT). Methods Nineteen adult Brown-Norway rats were studied; N = 10 ONT plus RGC label, N = 3 ONT plus vehicle only (sans label), N = 6 sham ONT plus RGC label. RNFLT was measured by spectral domain optical coherence tomography (SD-OCT) at baseline then weekly for 1 month. RGCs were labeled by retrograde transport of fluorescently conjugated cholera toxin B (CTB) from the superior colliculus 48 hours prior to ONT or sham surgery. RGC density measurements were obtained by confocal scanning laser ophthalmoscopy (CSLO) at baseline and weekly for 1 month. RGC density and reactivity of microglia (anti-Iba1) and astrocytes (anti-GFAP) were determined from post mortem fluorescence microscopy of whole-mount retinae. Results RNFLT decreased after ONT by 17% (p<0.05), 30% (p<0.0001) and 36% (p<0.0001) at weeks 2, 3 and 4. RGC density decreased after ONT by 18%, 69%, 85% and 92% at weeks 1, 2, 3 and 4 (p<0.0001 each). RGC density measured in vivo at week 4 and post mortem by microscopy were strongly correlated (R = 0.91, p<0.0001). In vivo measures of RNFLT and RGC density were strongly correlated (R = 0.81, p<0.0001). In ONT- CTB labeled fellow eyes, RNFLT increased by 18%, 52% and 36% at weeks 2, 3 and 4 (p<0.0001), but did not change in fellow ONT-eyes sans CTB. Microgliosis was evident in the RNFL of the ONT-CTB fellow eyes, exceeding that observed in other fellow eyes. Conclusions In vivo measurements of RNFLT and RGC density are strongly correlated and can be used to monitor longitudinal changes after optic nerve injury. The strong fellow eye effect observed in eyes contralateral to ONT, only in the presence of CTB label, consisted of a dramatic increase in RNFLT associated with retinal microgliosis.


PLOS ONE | 2014

Comparison of Retinal Nerve Fiber Layer Thickness In Vivo and Axonal Transport after Chronic Intraocular Pressure Elevation in Young versus Older Rats

Carla J. Abbott; Tiffany E. Choe; C. F. Burgoyne; Grant Cull; Lin Wang; Brad Fortune

Purpose To compare in young and old rats longitudinal measurements of retinal nerve fiber layer thickness (RNFLT) and axonal transport 3-weeks after chronic IOP elevation. Method IOP was elevated unilaterally in 2- and 9.5-month-old Brown-Norway rats by intracameral injections of magnetic microbeads. RNFLT was measured by spectral domain optical coherence tomography. Anterograde axonal transport was assessed from confocal scanning laser ophthalmolscopy of superior colliculi (SC) after bilateral intravitreal injections of cholera toxin-B-488. Optic nerve sections were graded for damage. Results Mean IOP was elevated in both groups (young 37, old 38 mmHg, p = 0.95). RNFL in young rats exhibited 10% thickening at 1-week (50.9±8.1 µm, p<0.05) vs. baseline (46.4±2.4 µm), then 7% thinning at 2-weeks (43.0±7.2 µm, p>0.05) and 3-weeks (43.5±4.4 µm, p>0.05), representing 20% loss of dynamic range. RNFLT in old rats showed no significant change at 1-week (44.9±4.1 µm) vs. baseline (49.2±5.3 µm), but progression to 22% thinning at 2-weeks (38.0±3.7 µm, p<0.01) and 3-weeks (40.0±6.6 µm, p<0.05), representing 59% loss of dynamic range. Relative SC fluorescence intensity was reduced in both groups (p<0.001), representing 77–80% loss of dynamic range and a severe transport deficit. Optic nerves showed 75–95% damage (p<0.001). There was greater RNFL thinning in old rats (p<0.05), despite equivalent IOP insult, transport deficit and nerve damage between age groups (all p>0.05). Conclusion Chronic IOP elevation resulted in severely disrupted axonal transport and optic nerve axon damage in all rats, associated with mild RNFL loss in young rats but a moderate RNFL loss in old rats despite the similar IOP insult. Hence, the glaucomatous injury response within the RNFL depends on age.


Investigative Ophthalmology & Visual Science | 2014

Evidence of axonopathy during early-stage experimental glaucoma: relationship between in vivo imaging and histological findings

Brad Fortune; Theresa A. Lusardi; Juan Reynaud; Tiffany E. Choe; Chelsea Piper; Grant Cull; C. F. Burgoyne; Lin Wang


Investigative Ophthalmology & Visual Science | 2013

Longitudinal Measurements In Vivo of Retinal Nerve Fiber Layer Thickness (RNFLT) and Retinal Ganglion Cell (RGC) Density after Optic Nerve Transection (ONT) in Rat

Tiffany E. Choe; Carla J. Abbott; Kendra Young; Brad Fortune


Investigative Ophthalmology & Visual Science | 2013

Axonal Transport Deficits Exceed Retinal Nerve Fiber Layer (RNFL) Changes after 3-weeks of Chronic Intraocular Pressure (IOP) Elevation in Young and Old Rats

Carla J. Abbott; Tiffany E. Choe; C. F. Burgoyne; Brad Fortune


Investigative Ophthalmology & Visual Science | 2012

Substantial Thickening of the Rat Peripapillary Retinal Nerve Fiber Layer but No Alteration of Axonal Transport 1- and 2-weeks after an 8-hour Elevation of Intraocular Pressure (IOP)

Carla J. Abbott; Tiffany E. Choe; Theresa A. Lusardi; Lin Wang; C. F. Burgoyne; Brad Fortune


Investigative Ophthalmology & Visual Science | 2012

Comparison Of Spectral Domain Optical Coherence Tomography (SDOCT) Imaging Modalities To Identify Deeper Structures Within The Rat Optic Nerve Head (ONH)

Tiffany E. Choe; Carla J. Abbott; Juan Reynaud; C. F. Burgoyne; Brad Fortune

Collaboration


Dive into the Tiffany E. Choe's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge