Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tiffany G. Troxler is active.

Publication


Featured researches published by Tiffany G. Troxler.


Nature Climate Change | 2012

Plot-scale evidence of tundra vegetation change and links to recent summer warming

Sarah C. Elmendorf; Gregory H. R. Henry; Robert D. Hollister; Robert G. Björk; Noémie Boulanger-Lapointe; Elisabeth J. Cooper; Johannes H. C. Cornelissen; Thomas A. Day; Ellen Dorrepaal; Tatiana G. Elumeeva; Mike Gill; William A. Gould; John Harte; David S. Hik; Annika Hofgaard; David R. Johnson; Jill F. Johnstone; Ingibjörg S. Jónsdóttir; Janet C. Jorgenson; Kari Klanderud; Julia A. Klein; Saewan Koh; Gaku Kudo; Mark Lara; Esther Lévesque; Borgthor Magnusson; Jeremy L. May; Joel A. Mercado-Díaz; Anders Michelsen; Ulf Molau

Temperature is increasing at unprecedented rates across most of the tundra biome(1). Remote-sensing data indicate that contemporary climate warming has already resulted in increased productivity ov ...


Critical Reviews in Environmental Science and Technology | 2011

Recent and historic drivers of landscape change in the everglades ridge, Slough, and Tree Island Mosaic

Laurel G. Larsen; Nicholas Aumen; Christopher E. Bernhardt; Vic Engel; Thomas J. Givnish; Scot E. Hagerthey; Judson W. Harvey; Lynn A. Leonard; Paul V. McCormick; Christopher McVoy; Gregory B. Noe; Martha Nungesser; Kenneth Rutchey; Fred H. Sklar; Tiffany G. Troxler; John C. Volin; Debra A. Willard

More than half of the original Everglades extent formed a patterned peat mosaic of elevated ridges, lower and more open sloughs, and tree islands aligned parallel to the dominant flow direction. This ecologically important landscape structure remained in a dynamic equilibrium for millennia prior to rapid degradation over the past century in response to human manipulation of the hydrologic system. Restoration of the patterned landscape structure is one of the primary objectives of the Everglades restoration effort. Recent research has revealed that three main drivers regulated feedbacks that initiated and maintained landscape structure: the spatial and temporal distribution of surface water depths, surface and subsurface flow, and phosphorus supply. Causes of recent degradation include but are not limited to perturbations to these historically important controls; shifts in mineral and sulfate supply may have also contributed to degradation. Restoring predrainage hydrologic conditions will likely preserve remaining landscape pattern structure, provided a sufficient supply of surface water with low nutrient and low total dissolved solids content exists to maintain a rainfall-driven water chemistry. However, because of hysteresis in landscape evolution trajectories, restoration of areas with a fully degraded landscape could require additional human intervention.


Philosophical Transactions of the Royal Society B | 2013

Phenological response of tundra plants to background climate variation tested using the International Tundra Experiment

Steven F. Oberbauer; Sarah C. Elmendorf; Tiffany G. Troxler; Robert D. Hollister; Adrian V. Rocha; M. S. Bret-Harte; M. A. Dawes; Anna Maria Fosaa; Gregory H. R. Henry; Toke T. Høye; Frith C. Jarrad; Ingibjörg S. Jónsdóttir; Kari Klanderud; Julia A. Klein; Ulf Molau; Christian Rixen; Niels Martin Schmidt; Gus Shaver; R. T. Slider; Ørjan Totland; Carl-Henrik Wahren; Jeffrey M. Welker

The rapidly warming temperatures in high-latitude and alpine regions have the potential to alter the phenology of Arctic and alpine plants, affecting processes ranging from food webs to ecosystem trace gas fluxes. The International Tundra Experiment (ITEX) was initiated in 1990 to evaluate the effects of expected rapid changes in temperature on tundra plant phenology, growth and community changes using experimental warming. Here, we used the ITEX control data to test the phenological responses to background temperature variation across sites spanning latitudinal and moisture gradients. The dataset overall did not show an advance in phenology; instead, temperature variability during the years sampled and an absence of warming at some sites resulted in mixed responses. Phenological transitions of high Arctic plants clearly occurred at lower heat sum thresholds than those of low Arctic and alpine plants. However, sensitivity to temperature change was similar among plants from the different climate zones. Plants of different communities and growth forms differed for some phenological responses. Heat sums associated with flowering and greening appear to have increased over time. These results point to a complex suite of changes in plant communities and ecosystem function in high latitudes and elevations as the climate warms.


Earth’s Future | 2016

Contributions of Organic and Inorganic Matter to Sediment Volume and Accretion in Tidal Wetlands at Steady State

James T. Morris; Donald C. Barber; John C. Callaway; Randy Chambers; Scott C. Hagen; Charles S. Hopkinson; Beverly J. Johnson; J. Patrick Megonigal; Scott C. Neubauer; Tiffany G. Troxler; Cathleen Wigand

Abstract A mixing model derived from first principles describes the bulk density (BD) of intertidal wetland sediments as a function of loss on ignition (LOI). The model assumes that the bulk volume of sediment equates to the sum of self‐packing volumes of organic and mineral components or BD = 1/[LOI/k1 + (1‐LOI)/k2], where k1 and k2 are the self‐packing densities of the pure organic and inorganic components, respectively. The model explained 78% of the variability in total BD when fitted to 5075 measurements drawn from 33 wetlands distributed around the conterminous United States. The values of k1 and k2 were estimated to be 0.085 ± 0.0007 g cm−3 and 1.99 ± 0.028 g cm−3, respectively. Based on the fitted organic density (k1) and constrained by primary production, the model suggests that the maximum steady state accretion arising from the sequestration of refractory organic matter is ≤ 0.3 cm yr−1. Thus, tidal peatlands are unlikely to indefinitely survive a higher rate of sea‐level rise in the absence of a significant source of mineral sediment. Application of k2 to a mineral sediment load typical of East and eastern Gulf Coast estuaries gives a vertical accretion rate from inorganic sediment of 0.2 cm yr−1. Total steady state accretion is the sum of the parts and therefore should not be greater than 0.5 cm yr−1 under the assumptions of the model. Accretion rates could deviate from this value depending on variation in plant productivity, root:shoot ratio, suspended sediment concentration, sediment‐capture efficiency, and episodic events.


Critical Reviews in Environmental Science and Technology | 2011

The Role of the Everglades Mangrove Ecotone Region (EMER) in Regulating Nutrient Cycling and Wetland Productivity in South Florida

Victor H. Rivera-Monroy; Robert R. Twilley; Stephen E. Davis; Daniel L. Childers; Marc Simard; Randolf Chambers; Rudolf Jaffé; Joseph N. Boyer; David T. Rudnick; Kequi Zhang; Edward Castañeda-Moya; Sharon M.L. Ewe; René M. Price; Carlos Coronado-Molina; Michael S. Ross; Thomas J. Smith; Béatrice Michot; Ehab A. Meselhe; William K. Nuttle; Tiffany G. Troxler; Gregory B. Noe

The authors summarize the main findings of the Florida Coastal Everglades Long-Term Ecological Research (FCE-LTER) program in the EMER, within the context of the Comprehensive Everglades Restoration Plan (CERP), to understand how regional processes, mediated by water flow, control population and ecosystem dynamics across the EMER landscape. Tree canopies with maximum height <3 m cover 49% of the EMER, particularly in the SE region. These scrub/dwarf mangroves are the result of a combination of low soil phosphorus (P < 59 μg P g dw−1) in the calcareous marl substrate and long hydroperiod. Phosphorus limits the EMER and its freshwater watersheds due to the lack of terrigenous sediment input and the phosphorus-limited nature of the freshwater Everglades. Reduced freshwater delivery over the past 50 years, combined with Everglades compartmentalization and a 10 cm rise in coastal sea level, has led to the landward transgression (∼1.5 km in 54 years) of the mangrove ecotone. Seasonal variation in freshwater input strongly controls the temporal variation of nitrogen and P exports (99%) from the Everglades to Florida Bay. Rapid changes in nutrient availability and vegetation distribution during the last 50 years show that future ecosystem restoration actions and land use decisions can exert a major influence, similar to sea level rise over the short term, on nutrient cycling and wetland productivity in the EMER.


Journal of Tropical Ecology | 2007

Patterns of phosphorus, nitrogen and δ 15 N along a peat development gradient in a coastal mire, Panama

Tiffany G. Troxler

Differentiation of limiting nutrients within small spatial scales has been observed in coastal mangrove forests, but research on other tropical peatlands suggests it is a more widespread phenomenon. In the Changuinola mire of coastal Panama, oligotrophy was hypothesized to increase along a gradient of peat development (peat doming). Nutrient and carbon concentration of leaf tissue, soil, and soil porewater were characterised over a successive sequence of plant communities along the gradient. Soil phosphorus (P) and nitrogen (N) concentrations decreased from 1200 μg P g −1 and 27 mg N g −1 to 377 μg P g −1 and 22 mg N g −1 within 2.7 km into the mire interior. These changes coincided with an increase in soil and average leaf N:P molar ratios from 52–128 and 24–41, respectively. Soil P was strongly related to leaf P and soil N:P to foliar N:P. There was a wide range in δ 15 N values for canopy (4.0 to −9.4‰), Campnosperma panamense (4.0 to −7.8‰) and understorey (4.8 to −3.1‰) species. Foliar δ 15 N values of canopy species were strongly related to soil N:P, soil P and leaf P. The depleted foliar δ 15 N values appeared to be an effect of both the N atmospheric source and P limitation. Here, P limitation is likely associated with ombrotrophic conditions that developed as hydrologic inputs became dominated by precipitation.


Critical Reviews in Environmental Science and Technology | 2011

Biogeochemical Processes on Tree Islands in the Greater Everglades: Initiating a New Paradigm

Paul R. Wetzel; Fred H. Sklar; Carlos Coronado; Tiffany G. Troxler; Steven L. Krupa; Pamela L. Sullivan; Sharon M.L. Ewe; René M. Price; Susan Newman; William H. Orem

Scientists’ understanding of the role of tree islands in the Everglades has evolved from a plant community of minor biogeochemical importance to a plant community recognized as the driving force for localized phosphorus accumulation within the landscape. Results from this review suggest that tree transpiration, nutrient infiltration from the soil surface, and groundwater flow create a soil zone of confluence where nutrients and salts accumulate under the head of a tree island during dry periods. Results also suggest accumulated salts and nutrients are flushed downstream by regional water flows during wet periods. That trees modulate their environment to create biogeochemical hot spots and strong nutrient gradients is a significant ecological paradigm shift in the understanding of the biogeochemical processes in the Everglades. In terms of island sustainability, this new paradigm suggests the need for distinct dry-wet cycles as well as a hydrologic regime that supports tree survival. Restoration of historic tree islands needs further investigation but the creation of functional tree islands is promising.


Wetlands | 2012

Patterns of Soil Bacteria and Canopy Community Structure Related to Tropical Peatland Development

Tiffany G. Troxler; Makoto Ikenaga; Leonard J. Scinto; Joseph N. Boyer; Richard Condit; Rolando Pérez; George D. Gann; Daniel L. Childers

Natural environmental gradients provide important information about the ecological constraints on plant and microbial community structure. In a tropical peatland of Panama, we investigated community structure (forest canopy and soil bacteria) and microbial community function (soil enzyme activities and respiration) along an ecosystem development gradient that coincided with a natural P gradient. Highly structured plant and bacterial communities that correlated with gradients in phosphorus status and soil organic matter content characterized the peatland. A secondary gradient in soil porewater NH4 described significant variance in soil microbial respiration and β-1-4-glucosidase activity. Covariation of canopy and soil bacteria taxa contributed to a better understanding of ecological classifications for biotic communities with applicability for tropical peatland ecosystems of Central America. Moreover, plants and soils, linked primarily through increasing P deficiency, influenced strong patterning of plant and bacterial community structure related to the development of this tropical peatland ecosystem.


Journal of Environmental Management | 2018

Effects of sea-level rise and freshwater management on long-term water levels and water quality in the Florida Coastal Everglades

Shimelis Behailu Dessu; René M. Price; Tiffany G. Troxler; John S. Kominoski

Since the 1880s, hydrological modification of the Greater Florida Everglades has reduced water levels and flows in Everglades National Park (ENP). The Comprehensive Everglades Restoration Program (CERP) began in 2000 to restore pre-drainage flows and preserve the natural landscape of the Everglades. However, sea-level rise (SLR) was not considered in the development of CERP. We used long-term data (2001-2016) from the Florida Coastal Everglades-Long Term Ecological Research Program to quantify and model the spatial dynamics of water levels, salinity, and nutrients in response to changes in climate, freshwater management and SLR in the Shark River Slough (SRS), ENP. Results indicate that fresh-to-marine head difference (FMHD) was the single most important factor affecting marine-to-freshwater hydrologic connectivity and transport of salinity and phosphorous upstream from the Gulf of Mexico. Sea-level has increasingly exceeded ground surface elevation at the most downstream freshwater site in SRS, thereby reducing the FMHD. We showed a higher impact of SLR in the dry season when there was practically no freshwater inflow to raise FMHD. We also demonstrated effectiveness of inflow depends more on the monthly distribution than the total annual volume. Hence, the impact per unit volume of inflow is significantly higher in the dry season in preventing high salinity and marine-derived nutrient levels. We advocate that FMHD needs to be factored into water management decisions to reduce adverse and likely irreversible effects of SLR throughout the Everglades landscape.


American Journal of Botany | 2010

Modeling Nymphoides architecture: A morphological analysis of Nymphoides aquatica (Menyanthaceae)

Jennifer H. Richards; Marlene Dow; Tiffany G. Troxler

UNLABELLED PREMISE OF THE STUDY Species in the aquatic genus Nymphoides have inflorescences that appear to arise from the petioles of floating leaves. The inflorescence-floating leaf complex can produce vegetative propagules and/or additional inflorescences and leaves. We analyzed the morphology of N. aquatica to determine how this complex relates to whole plant architecture and whether whole plant growth is sympodial or monopodial. • METHODS We used dissections, measurements, and microscopic observations of field-collected plants and plants cultivated for 2 years in outdoor tanks in south Florida, USA. • KEY RESULTS Nymphoides aquatica had a submerged plagiotropic rhizome that produced floating leaves in an alternate/spiral phyllotaxy. Rhizomes were composed of successive sympodial units that varied in the number of leaves produced before the apex terminated. The basic sympodial unit had a prophyll that subtended a renewal-shoot bud, a short-petioled leaf (SPL) with floating lamina, and an inflorescence; the SPL axillary bud expanded as a vegetative propagule. Plants produced either successive basic sympodial units or expanded sympodia that intercalated long-petioled leaves between the prophyll and the SPL. • CONCLUSIONS Nymphoides aquatica grows sympodially, forming a rhizome composed of successive basic sympodia and expanded sympodial units. Variations on these types of sympodial growth help explain the branching patterns and leaf morphologies described for other Nymphoides species. Monitoring how these two sympodial phases are affected by water depth provides an ecologically meaningful way to assess N. aquaticas responses to altered hydrology.

Collaboration


Dive into the Tiffany G. Troxler's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fred H. Sklar

South Florida Water Management District

View shared research outputs
Top Co-Authors

Avatar

James T. Morris

University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Jennifer H. Richards

Florida International University

View shared research outputs
Top Co-Authors

Avatar

René M. Price

Florida International University

View shared research outputs
Top Co-Authors

Avatar

Evelyn E. Gaiser

Florida International University

View shared research outputs
Top Co-Authors

Avatar

J. Patrick Megonigal

Smithsonian Environmental Research Center

View shared research outputs
Top Co-Authors

Avatar

John C. Callaway

University of San Francisco

View shared research outputs
Top Co-Authors

Avatar

John S. Kominoski

Florida International University

View shared research outputs
Top Co-Authors

Avatar

Joseph M. Smoak

University of South Florida St. Petersburg

View shared research outputs
Researchain Logo
Decentralizing Knowledge