Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tiffany Love is active.

Publication


Featured researches published by Tiffany Love.


Pharmacology, Biochemistry and Behavior | 2014

Oxytocin, motivation and the role of dopamine

Tiffany Love

The hypothalamic neuropeptide oxytocin has drawn the attention of scientists for more than a century. The understanding of the function of oxytocin has expanded dramatically over the years from a simple peptide adept at inducing uterine contractions and milk ejection to a complex neuromodulator with a capacity to shape human social behavior. Decades of research have outlined oxytocins ability to enhance intricate social activities ranging from pair bonding, sexual activity, affiliative preferences, and parental behaviors. The precise neural mechanisms underlying oxytocins influence on such behaviors have just begun to be understood. Research suggests that oxytocin interacts closely with the neural pathways responsible for processing motivationally relevant stimuli. In particular, oxytocin appears to impact dopaminergic activity within the mesocorticolimbic dopamine system, which is crucial not only for reward and motivated behavior but also for the expression of affiliative behaviors. Though most of the work performed in this area has been done using animal models, several neuroimaging studies suggest similar relationships may be observed in humans. In order to introduce this topic further, this paper will review the recent evidence that oxytocin may exert some of its social-behavioral effects through its impact on motivational networks.


American Journal of Psychiatry | 2010

Dysregulation of Regional Endogenous Opioid Function in Borderline Personality Disorder

Alan R. Prossin; Tiffany Love; Robert A. Koeppe; Jon Kar Zubieta; Kenneth R. Silk

OBJECTIVE Borderline personality disorder is characterized by a lack of effective regulation of emotional responses. The authors investigated the role of the endogenous opioid system and mu-opioid receptors in emotion regulation in borderline personality disorder. METHOD Mu-opioid receptor availability in vivo (nondisplaceable binding potential, or BP(ND)) was measured with positron emission tomography and the selective radiotracer [(11)C]carfentanil during neutral and sustained sadness states in 18 unmedicated female patients with borderline personality disorder and 14 healthy female comparison subjects. RESULTS Patients showed greater regional mu-opioid BP(ND) than did comparison subjects at baseline (neutral state) bilaterally in the orbitofrontal cortex, caudate, and nucleus accumbens and in the left amygdala, but lower BP(ND) in the posterior thalamus. Sadness induction was associated with greater reductions in BP(ND) (endogenous opioid system activation) in the patient group than in the comparison group in the pregenual anterior cingulate, left orbitofrontal cortex, left ventral pallidum, left amygdala, and left inferior temporal cortex. Patients showed evidence of endogenous opioid system deactivation in the left nucleus accumbens, the hypothalamus, and the right hippocampus/parahippocampus relative to comparison subjects. Correlations of baseline measures with the Dissociative Experiences Scale and endogenous opioid system activation with the Barratt Impulsiveness Scale did not remain significant after correction for multiple comparisons. CONCLUSIONS Differences exist between patients with borderline personality disorder and comparison subjects in baseline in vivo mu-opioid receptor concentrations and in the endogenous opioid system response to a negative emotional challenge that can be related to some of the clinical characteristics of patients with borderline personality disorder. The regional network involved is implicated in the representation and regulation of emotion and stress responses.


Molecular Psychiatry | 2013

Response of the μ-opioid system to social rejection and acceptance.

David T. Hsu; Benjamin Sanford; Kortni K. Meyers; Tiffany Love; Kathleen Hazlett; Heng Wang; Lisong Ni; Sara J Walker; Brian J. Mickey; Steven T. Korycinski; Robert A. Koeppe; Jennifer Crocker; Scott A. Langenecker; Jon Kar Zubieta

The endogenous opioid system, which alleviates physical pain, is also known to regulate social distress and reward in animal models. To test this hypothesis in humans (n=18), we used an μ-opioid receptor (MOR) radiotracer to measure changes in MOR availability in vivo with positron emission tomography during social rejection (not being liked by others) and acceptance (being liked by others). Social rejection significantly activated the MOR system (i.e., reduced receptor availability relative to baseline) in the ventral striatum, amygdala, midline thalamus and periaqueductal gray (PAG). This pattern of activation is consistent with the hypothesis that the endogenous opioids have a role in reducing the experience of social pain. Greater trait resiliency was positively correlated with MOR activation during rejection in the amygdala, PAG and subgenual anterior cingulate cortex (sgACC), suggesting that MOR activation in these areas is protective or adaptive. In addition, MOR activation in the pregenual ACC was correlated with reduced negative affect during rejection. In contrast, social acceptance resulted in MOR activation in the amygdala and anterior insula, and MOR deactivation in the midline thalamus and sgACC. In the left ventral striatum, MOR activation during acceptance predicted a greater desire for social interaction, suggesting a role for the MOR system in social reward. The ventral striatum, amygdala, midline thalamus, PAG, anterior insula and ACC are rich in MORs and comprise a pathway by which social cues may influence mood and motivation. MOR regulation of this pathway may preserve and promote emotional well being in the social environment.


Archives of General Psychiatry | 2011

Emotion processing, major depression, and functional genetic variation of neuropeptide Y.

Brian J. Mickey; Zhifeng Zhou; Mary M. Heitzeg; Elizabeth Heinz; Colin A. Hodgkinson; David T. Hsu; Scott A. Langenecker; Tiffany Love; Marta Peciña; Tal Shafir; Christian S. Stohler; David Goldman; Jon Kar Zubieta

CONTEXT Despite recent progress in describing the common neural circuitry of emotion and stress processing, the bases of individual variation are less well understood. Genetic variants that underlie psychiatric disease have proven particularly difficult to elucidate. Functional genetic variation of neuropeptide Y (NPY) was recently identified as a source of individual differences in emotion. Low NPY levels have been reported in major depressive disorder (MDD). OBJECTIVE To determine whether low-expression NPY genotypes are associated with negative emotional processing at 3 levels of analysis. DESIGN Cross-sectional, case-control study. SETTING Academic medical center. PARTICIPANTS Among 44 individuals with MDD and 137 healthy controls, 152 (84%) had an NPY genotype classified as low, intermediate, or high expression according to previously established haplotype-based expression data. MAIN OUTCOME MEASURES Healthy subjects participated in functional magnetic resonance imaging while viewing negative (vs neutral) words (n = 58) and rated positive and negative affect during a pain-stress challenge (n = 78). Genotype distribution was compared between 113 control subjects and 39 subjects with MDD. RESULTS Among healthy individuals, negatively valenced words activated the medial prefrontal cortex. Activation within this region was inversely related to genotype-predicted NPY expression (P = .03). Whole-brain regression of responses to negative words showed that the rostral anterior cingulate cortex activated in the low-expression group and deactivated in the high-expression group (P < .05). During the stress challenge, individuals with low-expression NPY genotypes reported more negative affective experience before and after pain (P = .002). Low-expression NPY genotypes were overrepresented in subjects with MDD after controlling for age and sex (P = .004). Population stratification did not account for the results. CONCLUSIONS These findings support a model in which NPY genetic variation predisposes certain individuals to low NPY expression, thereby increasing neural responsivity to negative stimuli within key affective circuit elements, including the medial prefrontal and anterior cingulate cortices. These genetically influenced neural response patterns appear to mediate risk for some forms of MDD.


Archives of General Psychiatry | 2009

Positron Emission Tomography Measures of Endogenous Opioid Neurotransmission and Impulsiveness Traits in Humans

Tiffany Love; Christian S. Stohler; Jon Kar Zubieta

CONTEXT The endogenous opioid system and opioid mu receptors (mu-receptors) are known to interface environmental events, positive (eg, relevant emotional stimuli) and negative (eg, stressors), with pertinent behavioral responses and to regulate motivated behavior. OBJECTIVE To examine the degree to which trait impulsiveness (the tendency to act on cravings and urges rather than to delay gratification) is predicted by baseline mu-receptor availability or the response of this system to a standardized, experientially matched stressor. DESIGN, SETTING, AND PATIENTS Nineteen young healthy male volunteers completed a personality questionnaire (NEO Personality Inventory, Revised) and underwent positron emission tomography scans with the mu-receptor-selective radiotracer carfentanil labeled with carbon 11. Measures of receptor concentrations were obtained at rest and during receipt of an experimentally maintained pain stressor of matched intensity between subjects. MAIN OUTCOME MEASURES Baseline receptor levels and stress-induced activation of mu-opioid system neurotransmission compared between subjects scoring above and below the population median on the NEO Personality Inventory, Revised, impulsiveness subscale and the orthogonal dimension (deliberation) expected to interact with it. RESULTS High impulsiveness and low deliberation scores were associated with significantly higher regional mu-receptor concentrations and greater stress-induced endogenous opioid system activation. Effects were obtained in the prefrontal and orbitofrontal cortices, anterior cingulate, thalamus, nucleus accumbens, and basolateral amygdala-all regions involved in motivated behavior and the effects of drugs of abuse. Availability of the mu-receptor and the magnitude of stress-induced endogenous opioid activation in these regions accounted for 17% to 49% of the variance in these personality traits. CONCLUSIONS Individual differences in the function of the endogenous mu-receptor system predict personality traits that confer vulnerability to or resiliency against risky behaviors such as the predisposition to develop substance use disorders. These personality traits are also implicated in psychopathological states (eg, personality disorders) in which variations in the function of this neurotransmitter system also may play a role.


Neuropsychopharmacology | 2013

Personality Trait Predictors of Placebo Analgesia and Neurobiological Correlates

Marta Peciña; Hamdan Azhar; Tiffany Love; Tingting Lu; Barbara L. Fredrickson; Christian S. Stohler; Jon Kar Zubieta

Personality traits have been shown to interact with environmental cues to modulate biological responses including treatment responses, and potentially having a role in the formation of placebo effects. Here, we assessed psychological traits in 50 healthy controls as to their capacity to predict placebo analgesic effects, placebo-induced activation of μ-opioid neurotransmission and changes in cortisol plasma levels during a sustained experimental pain challenge (hypertonic saline infused in the masseter muscle) with and without placebo administration. Statistical analyses showed that an aggregate of scores from Ego-Resiliency, NEO Altruism, NEO Straightforwardness (positive predictors) and NEO Angry Hostility (negative predictor) scales accounted for 25% of the variance in placebo analgesic responses. Molecular imaging showed that subjects scoring above the median in a composite of those trait measures also presented greater placebo-induced activation of μ-opioid neurotransmission in the subgenual and dorsal anterior cingulate cortex (ACC), orbitofrontal cortex, insula, nucleus accumbens, amygdala and periaqueductal gray (PAG). Endogenous opioid release in the dorsal ACC and PAG was positively correlated with placebo-induced reductions in pain ratings. Significant reductions in cortisol levels were observed during placebo administration and were positively correlated with decreases in pain ratings, μ-opioid system activation in the dorsal ACC and PAG, and as a trend, negatively with NEO Angry Hostility scores. Our results show that personality traits explain a substantial proportion of the variance in placebo analgesic responses and are further associated with activations in endogenous opioid neurotransmission, and as a trend cortisol plasma levels. This initial data, if replicated in larger sample, suggest that simple trait measures easily deployable in the field could be utilized to reduce variability in clinical trials, but may also point to measures of individual resiliency in the face of aversive stimuli such as persistent pain and potentially other stressors.


Biological Psychiatry | 2012

Oxytocin Gene Polymorphisms Influence Human Dopaminergic Function in a Sex-Dependent Manner

Tiffany Love; Mary Anne Enoch; Colin A. Hodgkinson; Marta Peciña; Brian J. Mickey; Robert A. Koeppe; Christian S. Stohler; David Goldman; Jon Kar Zubieta

BACKGROUND Oxytocin, classically involved in social and reproductive activities, is increasingly recognized as an antinociceptive and anxiolytic agent, effects which may be mediated via oxytocins interactions with the dopamine system. Thus, genetic variation within the oxytocin gene (OXT) is likely to explain variability in dopamine-related stress responses. As such, we examined how OXT variation is associated with stress-induced dopaminergic neurotransmission in a healthy human sample. METHODS Fifty-five young healthy volunteers were scanned using [¹¹C]raclopride positron emission tomography while they underwent a standardized physical and emotional stressor that consisted of moderate levels of experimental sustained deep muscle pain, and a baseline, control state. Four haplotype tagging single nucleotide polymorphisms located in regions near OXT were genotyped. Measures of pain, affect, anxiety, well-being and interpersonal attachment were also assessed. RESULTS Female rs4813625 C allele carriers demonstrated greater stress-induced dopamine release, measured as reductions in receptor availability from baseline to the pain-stress condition relative to female GG homozygotes. No significant differences were detected among males. We also observed that female rs4813625 C allele carriers exhibited higher attachment anxiety, higher trait anxiety and lower emotional well-being scores. In addition, greater stress-induced dopamine release was associated with lower emotional well-being scores in female rs4813625 C allele carriers. CONCLUSIONS Our results suggest that variability within the oxytocin gene appear to explain interindividual differences in dopaminergic responses to stress, which are shown to be associated with anxiety traits, including those linked to attachment style, as well as emotional well-being in women.


Biological Psychiatry | 2007

Histological and magnetic resonance imaging assessment of cortical layering and thickness in autism spectrum disorders.

Jeffrey J. Hutsler; Tiffany Love; Hong Zhang

BACKGROUND Qualitative reports of the cerebral cortex in a small number of autism spectrum disorder (ASD) cases have suggested an increase in thickness and disruptions in migration and lamination patterns. METHODS We examined postmortem ASD individuals and age-matched controls using magnetic resonance imaging (MRI) to evaluate total cortical thickness, and histological samples to evaluate the pattern of cortical layering. RESULTS Overall, thickness measures from ASD subjects were equivalent to control cases. Individual regions showed marginal but nonsignificant thickness differences in the temporal lobes. Cortical thickness values in ASD subjects decreased significantly with age. Quantitative examination of proportional layer thickness in histological sections indicated that the pattern of cortical layering was largely undisturbed, while qualitative examination of these same samples revealed evidence of cell clustering and supernumerary cells in layer I and the subplate. These features were not severe and were never found in a majority of cases. CONCLUSIONS These findings support limited disturbances in cortical cell patterning, but do not indicate a major deficit in the orderly migration of cortical neuroblasts during development, or their subsequent aggregation into the laminar pattern found in typically developing individuals.


Frontiers in Psychiatry | 2012

Immediate Effects of tDCS on the μ-Opioid System of a Chronic Pain Patient

Marcos F. DosSantos; Tiffany Love; Ilkka K. Martikainen; Thiago D. Nascimento; Felipe Fregni; Chelsea M. Cummiford; Misty DeBoer; Jon Kar Zubieta; Alexandre F. DaSilva

We developed a unique protocol where transcranial direct current stimulation (tDCS) of the motor cortex is performed during positron emission tomography (PET) scan using a μ-opioid receptor (μOR) selective radiotracer, [11C]carfentanil. This is one of the most important central neuromechanisms associated with pain perception and regulation. We measured μOR non-displaceable binding potential (μOR BPND) in a trigeminal neuropathic pain patient (TNP) without creating artifacts, or posing risks to the patient (e.g., monitoring of resistance). The active session directly improved in 36.2% the threshold for experimental cold pain in the trigeminal allodynic area, mandibular branch, but not the TNP patient’s clinical pain. Interestingly, the single active tDCS application considerably decreased μORBPND levels in (sub)cortical pain-matrix structures compared to sham tDCS, especially in the posterior thalamus. Suggesting that the μ-opioidergic effects of a single tDCS session are subclinical at immediate level, and repetitive sessions are necessary to revert ingrained neuroplastic changes related to the chronic pain. To our knowledge, we provide data for the first time in vivo that there is possibly an instant increase of endogenous μ-opioid release during acute motor cortex neuromodulation with tDCS.


Neuropsychopharmacology | 2015

Effects of the Mu opioid receptor polymorphism (OPRM1 A118G) on pain regulation, placebo effects and associated personality trait measures.

Marta Peciña; Tiffany Love; Christian S. Stohler; David Goldman; Jon Kar Zubieta

Mu-opioid receptors (MOPRs) are critically involved in the modulation of pain and analgesia, and represent a candidate mechanism for the development of biomarkers of pain conditions and their responses to treatment. To further understand the human implications of genetic variation within the opioid system in pain and opioid-mediated placebo responses, we investigated the association between the functional single-nucleotide polymorphism (SNP) in the μ-opioid receptor gene (OPRM1), A118G, and psychophysical responses, personality traits, and neurotransmitter systems (dopamine (DA), opioid) related to pain and placebo analgesia. OPRM1 G carriers, compared with AA homozygotes, showed an overall reduction of baseline μ-opioid receptor availability in regions implicated in pain and affective regulation. In response to a sustained painful stimulus, we found no effect of A118G on pain-induced endogenous opioid release. Instead, AA homozygotes showed a blunted DA response in the nucleus accumbens (NAc) in response to the pain challenge. After placebo administration, G carriers showed more pronounced mood disturbances and lower placebo-induced μ-opioid system activation in the anterior insula (aINS), the amygdala (AMY), the NAc, the thalamus (THA), and the brainstem, as well as lower levels of DA D2/3 activation in the NAc. At a trait level, G carriers reported higher NEO-Neuroticism scores; a personality trait previously associated with increased pain and lower placebo responses, which were negatively correlated with baseline μ-opioid receptor availability in the aINS and subgenual anterior cingulate cortex (sgACC). Our results demonstrate that the A118G OPRM1 polymorphism contributes to interindividual variations in the function of neurotransmitters responsive to pain (endogenous opioid and dopamine), as well as their regulation through cognitive-emotional influences in the context of therapeutic expectations, the so-called placebo effect. These effects are relevant to human vulnerability to disease processes where these neurotransmitters have a role, such as persistent pain, mood, and substance use disorders, and responses to their treatments.

Collaboration


Dive into the Tiffany Love's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marta Peciña

Molecular and Behavioral Neuroscience Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David Goldman

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge