Tiffany N. Eady
Louisiana State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Tiffany N. Eady.
Experimental Neurology | 2012
Nicolas G. Bazan; Tiffany N. Eady; Kristal D. Atkins; Song Hong; Yan Lu; Changde Zhang; Bokkyoo Jun; Andre Obenaus; Gabrielle Fredman; Min Zhu; Jeremy W. Winkler; Nicos A. Petasis; Charles N. Serhan; Ludmila Belayev
Acute ischemic stroke triggers complex neurovascular, neuroinflammatory and synaptic alterations. Aspirin and docosahexaenoic acid (DHA), an omega-3 essential fatty acid family member, have beneficial effects on cerebrovascular diseases. DHA is the precursor of neuroprotectin D1 (NPD1), which downregulates apoptosis and, in turn, promotes cell survival. Here we have tested the effect of aspirin plus DHA administration and discovered the synthesis of aspirin-triggered NPD1 (AT-NPD1) in the brain. Then we performed the total chemical synthesis of this molecule and tested in the setting of 2h middle cerebral artery occlusion (MCAo) in Sprague-Dawley rats. Neurological status was evaluated at 24h, 48 h, 72 h, and 7 days. At 3h post-stroke onset, an intravenous administration of 333 μg/kg of AT-NPD1 sodium salt (AT-NPD1-SS) or methyl-ester (AT-NPD1-ME) or vehicle (saline) as treatment was given. On day 7, ex vivo magnetic resonance imaging (MRI) of the brains was conducted on 11.7 T MRI. T2WI, 3D volumes, and apparent diffusion coefficient (ADC) maps were generated. In addition, infarct volumes and number of GFAP (reactive astrocytes), ED-1 (activated microglia/macrophages) and SMI-71-positive vessels were counted in the cortex and striatum at the level of the central lesion. All animals showed similar values for rectal and cranial temperatures, arterial blood gases, and plasma glucose during and after MCAo. Treatment with both AT-NPD1-SS and AT-NPD1-ME significantly improved neurological scores compared to saline treatment at 24h, 48 h, 72 h and 7 days. Total lesion volumes computed from T2WI images were significantly reduced by both AT-NPD1-SS and AT-NPD1-ME treatment in the cortex (by 44% and 81%), striatum (by 61% and 77%) and total infarct (by 48% and 78%, respectively). Brain edema, computed from T2WI in the cortex (penumbra) and striatum (core), was elevated in the saline group. In contrast, both AT-NPD1 decreased water content in the striatum on day 7. 3D volumes, computed from T2WI, were dramatically reduced with both AT-NPD1 and the lesion was mostly localized in the subcortical areas. Treatment with both AT-NPD1-SS and AT-NPD1-ME significantly reduced cortical (by 76% and 96%), subcortical (by 61% and 70%) and total (69% and 84%, respectively) infarct volumes as defined by histopathology. In conclusion, a novel biosynthetic pathway that leads to the formation of AT-NPD1 mediator in the brain was discovered. In addition, administration of synthetic AT-NPD1, in either its sodium salt or as the methyl ester, was able to attenuate cerebral ischemic injury which leads to a novel approach for pharmaceutical intervention and clinical translation.
PLOS ONE | 2012
Tiffany N. Eady; Ludmila Belayev; Kristal D. Atkins; Changde Zhang; Nicolas G. Bazan
Background Docosahexaenoic acid, a major omega-3 essential fatty acid family member, improves behavioral deficit and reduces infarct volume and edema after experimental focal cerebral ischemia. We hypothesize that DHA elicits neuroprotection by inducing AKT/p70S6K phosphorylation, which in turn leads to cell survival and protects against ischemic stroke in young and aged rats. Methods and Results Rats underwent 2 h of middle cerebral artery occlusion (MCAo). DHA, neuroprotectin D1 (NPD1) or vehicle (saline) was administered 3 h after onset of stroke. Neurological function was evaluated on days 1, 2, 3, and 7. DHA treatment improved functional recovery and reduced cortical, subcortical and total infarct volumes 7 days after stroke. DHA also reduced microglia infiltration and increased the number of astrocytes and neurons when compared to vehicle on days 1 and 7. Increases in p473 AKT and p308 AKT phosphorylation/activation were observed in animals treated with DHA 4 h after MCAo. Activation of other members of the AKT signaling pathway were also observed in DHA treated animals including increases in pS6 at 4 h and pGSK at 24 h. DHA or NPD1 remarkably reduced total and cortical infarct in aged rats. Moreover, we show that in young and aged rats DHA treatment after MCAo potentiates NPD1 biosynthesis. The phosphorylation of p308 AKT or pGSK was not different between groups in aged rats. However, pS6 expression was increased with DHA or NPD1 treatment when compared to vehicle. Conclusions We suggest that DHA induces cell survival, modulates the neuroinflammatory response and triggers long term restoration of synaptic circuits. Both DHA and NPD1 elicited remarkable protection in aged animals. Accordingly, activation of DHA signaling might provide benefits in the management of ischemic stroke both acutely as well as long term to limit ensuing disabilities.
Neurobiology of Disease | 2014
Tiffany N. Eady; Andre Obenaus; Alena Mohd-Yusof; Nicolas G. Bazan; Ludmila Belayev
Recently we have shown that docosahexaenoic acid complexed to albumin (DHA-Alb) is neuroprotective after experimental stroke in young rats. The purpose of this study was to determine whether treatment with DHA-Alb would be protective in aged rats after focal cerebral ischemia. Isoflurane/nitrous oxide-anesthetized normothermic (brain temperature 36-36.5°C) Sprague-Dawley aged rats (18-months old) received 2h middle cerebral artery occlusion (MCAo) by poly-l-lysine-coated intraluminal suture. The neurological status was evaluated during occlusion (60min) and on days 1, 2, 3 and 7 after MCAo; a grading scale of 0-12 was employed. DHA (5mg/kg), Alb (0.63g/kg), DHA-Alb (5mg/kg+0.63g/kg) or saline was administered i.v. 3h after onset of stroke (n=8-10 per group). Ex vivo T2-weighted imaging (T2WI) of the brains was conducted on an 11.7T MRI on day 7 and 3D reconstructions were generated. Infarct volumes and number of GFAP (reactive astrocytes), ED-1 (activated microglia/microphages), NeuN (neurons)-positive cells and SMI-71 (positive vessels) were counted in the cortex and striatum at the level of the central lesion. Physiological variables were entirely comparable between groups. Animals treated with DHA-Alb showed significantly improved neurological scores compared to vehicle rats; 33% improvement on day 1; 39% on day 2; 41% on day 3; and 45% on day 7. Total and cortical lesion volumes computed from T2WI were significantly reduced by DHA-Alb treatment (62 and 69%, respectively). In addition, treatment with DHA-Alb reduced cortical and total brain infarction while promoting cell survival. We conclude that DHA-Alb therapy is highly neuroprotective in aged rats following focal cerebral ischemia and has potential for the effective treatment of ischemic stroke in aged individuals.
PLOS ONE | 2013
Tiffany N. Eady; Daniela V. Anzola; Sung-Ha Hong; Andre Obenaus; Alena Mohd-Yusof; Nicolas G. Bazan; Ludmila Belayev
Docosahexaenoic acid complexed to albumin (DHA-Alb) is highly neuroprotective after temporary middle cerebral artery occlusion (MCAo), but whether a similar effect occurs in permanent MCAo is unknown. Male Sprague-Dawley rats (270–330 g) underwent permanent MCAo. Neurological function was evaluated on days 1, 2 and 3 after MCAo. We studied six groups: DHA (5 mg/kg), Alb (0.63 or 1.25 g/kg), DHA-Alb (5 mg/kg+0.63 g/kg or 5 mg/kg+1.25 g/kg) or saline. Treatment was administered i.v. at 3 h after onset of stroke (n = 7–10 per group). Ex vivo imaging of brains and histopathology were conducted on day 3. Saline- and Alb-treated rats developed severe neurological deficits but were not significantly different from one another. In contrast, rats treated with low and moderate doses of DHA-Alb showed improved neurological score compared to corresponding Alb groups on days 2 and 3. Total, cortical and subcortical lesion volumes computed from T2 weighted images were reduced following a moderate dose of DHA-Alb (1.25 g/kg) by 25%, 22%, 34%, respectively, compared to the Alb group. The total corrected, cortical and subcortical infarct volumes were reduced by low (by 36–40%) and moderate doses (by 34–42%) of DHA-Alb treatment compared to the Alb groups. In conclusion, DHA-Alb therapy is highly neuroprotective in permanent MCAo in rats. This treatment can provide the basis for future therapeutics for patients suffering from ischemic stroke.
Experimental & Translational Stroke Medicine | 2012
Tiffany N. Eady; Kristal D. Atkins; Nicolas G. Bazan; Ludmila Belayev
BackgroundDocosahexaenoic acid (DHA) complexed to human serum albumin (Alb) is neuroprotective after experimental stroke. Here we tested using lower concentrations of albumin as part of the complex to achieve neuroprotection. We found that lower Alb concentrations extend the therapeutic window of protection beyond 5 h after stroke onset.MethodsSprague–Dawley rats were received 2 h middle cerebral artery occlusion (MCAo). The behavior was evaluated on day 1, 2, 3 and 7 after MCAo. In the dose–response study, animals were given either DHA (5mg/kg), Alb (0.63g/kg), DHA-Alb (5mg/kg + 0.32, 0.63 or 1.25 g/kg) or saline, i.v. 3 h after onset of stroke (n=6-8 per group). In the therapeutic window study, DHA-Alb (5mg/kg + 1.25g/kg) was administered i.v. at either 3, 4, 5, 6 or 7 h after onset of stroke (n=7-9 per group). Alb (1.25g/kg) was given at 3 h or 5 h and saline at 3h after onset of reperfusion. Seven days after MCAo, infarct volumes and number of GFAP, ED-1, NeuN, SMI-71 positive cells and vessels were counted.ResultsModerate DHA-Alb doses (0.63 and 1.25 g/kg) improved neurological scores compared to albumin-treated rats on days 1, 2, 3 and 7. All DHA-Alb doses (0.32, 0.63 and 1.25 g/kg) markedly reduced cortical (by 65-70%), striatal (by 52-63%) and total infarct volumes (by 60-64%) compared to native Alb group. In the therapeutic window study DHA-Alb led to improved neurological score and significant reductions of infarct volumes (especially in the cortical or penumbral region), even when treatment was initiated as late as 7 hours after onset of MCAo.ConclusionsThe DHA-Alb complex affords high-grade neurobehavioral neuroprotection in focal cerebral ischemia, equaling or exceeding that afforded by native Alb or DHA, at considerably moderate doses. It has a broad therapeutic window extending to 7 h after stroke onset. Taken together, these finding support the potential clinical feasibility of administering DHA-Alb therapy to patients with acute ischemic stroke.
Translational Stroke Research | 2011
Ludmila Belayev; Kristal D. Atkins; Tiffany N. Eady; Song Hong; Yan Lu; Andre Obenaus; Nicolas G. Bazan
Translational Stroke Research | 2012
Ludmila Belayev; Tiffany N. Eady; Kristal D. Atkins; Andre Obenaus; Juan J. Vaquero; Julio Alvarez-Builla; Nicolas G. Bazan
Stroke | 2013
Nicolas G. Bazan; Tiffany N. Eady; Kristal D. Atkins; Julio Alvarez-Builla; Ludmila Belayev
Circulation | 2013
Ludmila Belayev; Andre Obenaus; Tiffany N. Eady; Nicolas G. Bazan
Stroke | 2012
Ludmila Belayev; Kristal D. Atkins; Tiffany N. Eady; Nicolas D Bazan