Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tiffany Porta is active.

Publication


Featured researches published by Tiffany Porta.


Analytical Chemistry | 2011

Single Hair Cocaine Consumption Monitoring by Mass Spectrometric Imaging

Tiffany Porta; Chantal Grivet; Thomas Kraemer; Emmanuel Varesio; Gérard Hopfgartner

Matrix-assisted laser desorption/ionization mass spectrometric imaging (MALDI-MSI) was used to image the distribution of cocaine and its metabolites in intact single hair samples from chronic users down to a concentration of 5 ng/mg. Acquisitions were performed in rastering mode, at a speed of 1 mm/s and in the selected reaction monitoring (SRM) mode on a MALDI triple quadrupole linear ion trap fitted with a high repetition rate laser (1 kHz). Compared to traditional methods based on LC-MS/MS or GC-MS(/MS) which require to segment the hair to obtain spatial resolution, MALDI-MSI, with a straightforward sample preparation beforehand, allowed obtaining a spatial resolution of 1 mm and thus the chronological information about cocaine consumption contained in a single intact hair over several months could be monitored. The analysis time of an intact single hair sample of 6 cm is approximately of 6 min. Cocaine and its metabolites benzoylecgonine, ethylcocaine, and norcocaine were investigated in nine sets of hair samples for forensic purposes. The analyses were accomplished by spraying α-cyano-4-hydroxycinnamic acid (CHCA), 4-chloro-α-cyano-cinnamic acid (Cl-CCA), or (E)-2-cyano-3-(naphthalen-2-yl)acrylic acid (NpCCA) as MALDI matrices. We also propose a rapid strategy for sensitive confirmatory analyses with both MS/MS and MS(3) experiments performed directly on intact hair samples. Since only part of the hair strand is analyzed, additional analyses are possible at any time on the remaining hair from the strand.


Rapid Communications in Mass Spectrometry | 2015

Use of advantageous, volatile matrices enabled by next-generation high-speed matrix-assisted laser desorption/ionization time-of-flight imaging employing a scanning laser beam.

Nina Ogrinc Potočnik; Tiffany Porta; Michael Becker; Ron M. A. Heeren; Shane R. Ellis

RATIONALE In mass spectrometry imaging (MSI) it is often desirable to analyse the same sample in both polarities to extract the most information. However, many matrices that produce high-quality spectra in matrix-assisted laser desorption/ionization (MALDI) are volatile, greatly limiting their use in long imaging experiments. We demonstrate that using a new high speed MALDI-MSI instrument, volatile matrices, including those that produce intense lipid signals in both positive and negative ion mode, can now be effectively used in MSI. METHODS A prototype Bruker rapifleX MALDI Tissuetyper™ time-of-flight (TOF) instrument was used for high-speed imaging. This allows acquisition rates up to 50 pixels/s made possible by use of a 10 kHz laser and two rotating mirrors that allow the laser beam to be moved over, and synchronised with, the rapidly moving sample. MSI experiments were performed on mouse brain sections using non-vacuum stable dithranol and 2,6-dihydroxyacetophenone (DHA) matrices with pixel sizes ranging from 10 × 10 µm(2) to 50 × 50 µm(2). RESULTS Both DHA and dithranol produced rich, complementary lipid spectra in both positive and negative ion modes. Due to the rapid acquisition speed of the instrument, both matrices could be effectively used for MSI despite their volatility. For example, an entire mouse brain could be imaged consecutively in both positive and negative ion mode with 50 × 50 µm(2) pixels in ~35 min. We demonstrate that these speeds make possible both faster and higher resolution imaging of biological tissues on practical timescales. CONCLUSIONS These high acquisition speeds now make possible whole new classes of matrices that are unstable under high vacuum for MALDI-MSI studies. This provides researchers with far greater range and flexibility in choosing the best matrix for the given sample and analytes that they wish to detect. In addition, such instruments allow MSI to be performed at higher resolution across larger areas on practical time scales.


Analytical Chemistry | 2013

Gas-phase separation of drugs and metabolites using modifier-assisted differential ion mobility spectrometry hyphenated to liquid extraction surface analysis and mass spectrometry.

Tiffany Porta; Emmanuel Varesio; Gérard Hopfgartner

The present work describes an alternative generic approach to LC-MS for the analysis of drugs of abuse as well as their metabolites in post-mortem tissue samples. The platform integrates liquid extraction surface analysis (LESA) for analytes tissue extraction followed by differential ion mobility spectrometry (DMS) mass spectrometry for analytes gas phase separation. Detection is performed on a triple quadrupole linear ion trap using the selected reaction monitoring mode for quantification as well as product ion scan mode for structural confirmatory analyses. The major advantages of the platform are that neither chromatographic separation nor extensive sample preparation are required. In DMS the combination of a high separation voltage (i.e., up to 4 kV) together with organic modifiers (e.g., alcohols, acetonitrile, acetone) added in the drift gas is required to achieve the separation of isomeric metabolites, such as the ones of cocaine and tramadol. DMS also separates morphine from its glucuronide metabolites, which allows for preventing the overestimation of morphine in case of fragmentation of the glucuronides in the atmospheric-to-vacuum interface of the mass spectrometer. Cocaine, opiates, opioids, amphetamines, benzodiazepines and several of their metabolites could be identified in post-mortem human kidney and muscle tissue based on simultaneous screening and confirmatory analysis in data-dependent acquisition mode using an analyte-dependent compensation voltage to selectively transmit ions through the DMS cell to the mass analyzer. Quantitative performance of the LESA-DMS-MS platform was evaluated for cocaine and two of its metabolites spotted onto a tissue section using deuterated internal standard. Analytes responses were linear from 2 to 1000 pg on tissue corresponding to a limit of detection in the order of nanograms of analyte per gram of tissue. Accuracy and precision based on QC sample was found to be less than 10%. Replicate analyses of cocaine and its metabolites in forensic samples showed an intra- and inter-sections variability of less than 25%.


Journal of Mass Spectrometry | 2011

Alternative CHCA-based matrices for the analysis of low molecular weight compounds by UV-MALDI-tandem mass spectrometry

Tiffany Porta; Chantal Grivet; Richard Knochenmuss; Emmanuel Varesio; Gérard Hopfgartner

Analysis of low molecular weight compounds (LMWC) in complex matrices by vacuum matrix-assisted laser desorption/ionization (MALDI) often suffers from matrix interferences, which can severely degrade limits of quantitation. It is, therefore, useful to have available a range of suitable matrices, which exhibit complementary regions of interference. Two newly synthesized α-cyanocinnamic acid derivatives are reported here; (E)-2-cyano-3-(naphthalen-2-yl)acrylic acid (NpCCA) and (2E)-3-(anthracen-9-yl)-2-cyanoprop-2enoic acid (AnCCA). Along with the commonly used α-cyano-4-hydroxycinnamic acid (CHCA), and the recently developed 4-chloro-α-cyanocinnamic acid (Cl-CCA) matrices, these constitute a chemically similar series of matrices covering a range of molecular weights, and with correspondingly differing ranges of spectral interference. Their performance was compared by measuring the signal-to-noise ratios (S/N) of 47 analytes, mostly pharmaceuticals, with the different matrices using the selected reaction monitoring (SRM) mode on a triple quadrupole instrument equipped with a vacuum MALDI source. AnCCA, NpCCA and Cl-CCA were found to offer better signal-to-noise ratios in SRM mode than CHCA, but Cl-CCA yielded the best results for 60% of the compounds tested. To better understand the relative performance of this matrix series, the proton affinities (PAs) were measured using the kinetic method. Their relative values were: AnCCA > CHCA > NpCCA > Cl-CCA. This ordering is consistent with the performance data. The synthesis of the new matrices is straightforward and they provide (1) tunability of matrix background interfering ions and (2) enhanced analyte response for certain classes of compounds.


Plant Physiology | 2015

The Last Step in Cocaine Biosynthesis Is Catalyzed by a BAHD Acyltransferase

Gregor W Schmidt; Jan Jirschitzka; Tiffany Porta; Michael Reichelt; Katrin Luck; Jose Pardo-Torre; Franziska Dolke; Emmanuel Varesio; Gérard Hopfgartner; Jonathan Gershenzon; John D'Auria

The terminal step in cocaine biosynthesis is catalyzed by an acyltransferase that utilizes benzoyl-CoA and methylecgonine as substrates and is localized to the spongy mesophyll. The esterification of methylecgonine (2-carbomethoxy-3β-tropine) with benzoic acid is the final step in the biosynthetic pathway leading to the production of cocaine in Erythoxylum coca. Here we report the identification of a member of the BAHD family of plant acyltransferases as cocaine synthase. The enzyme is capable of producing both cocaine and cinnamoylcocaine via the activated benzoyl- or cinnamoyl-Coenzyme A thioesters, respectively. Cocaine synthase activity is highest in young developing leaves, especially in the palisade parenchyma and spongy mesophyll. These data correlate well with the tissue distribution pattern of cocaine as visualized with antibodies. Matrix-assisted laser-desorption ionization mass spectral imaging revealed that cocaine and cinnamoylcocaine are differently distributed on the upper versus lower leaf surfaces. Our findings provide further evidence that tropane alkaloid biosynthesis in the Erythroxylaceae occurs in the above-ground portions of the plant in contrast with the Solanaceae, in which tropane alkaloid biosynthesis occurs in the roots.


Analytical Chemistry | 2016

Derivatization Strategies for the Detection of Triamcinolone Acetonide in Cartilage by Using Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Imaging

Florian P.Y. Barré; Bryn Flinders; João P. Garcia; Imke Jansen; Lennart R. S. L.R.S. Huizing; Tiffany Porta; Laura B. Creemers; Ron M. A. Heeren; B. Cillero-Pastor

Osteoarthritis (OA), characterized by degeneration of the cartilaginous tissue in articular joints, severely impairs mobility in many people worldwide. The degeneration is thought to be mediated by inflammatory processes occurring in the tissue of the joint, including the cartilage. Intra-articular administered triamcinolone acetonide (TAA) is one of the drug treatments employed to ameliorate the inflammation and pain that characterizes OA. However, the penetration and distribution of TAA into the avascular cartilage is not well understood. We employed matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI), which has been previously used to directly monitor the distribution of drugs in biological tissues, to evaluate the distribution of TAA in human cartilage after in vitro incubation. Unfortunately, TAA is not easily ionized by regular electrospray ionization (ESI) or MALDI. To overcome this problem, we developed an on-tissue derivatization method with Girards reagent T (GirT) in human incubated cartilage being able to study its distribution and quantify the drug abundance (up to 3.3 ng/μL). Our results demonstrate the depth of penetration of a corticosteroid drug in human OA cartilage using MALDI-MSI.


Analytical Chemistry | 2017

Integration of Ion Mobility MSE after Fully Automated, Online, High-Resolution Liquid Extraction Surface Analysis Micro-Liquid Chromatography

Lieke Lamont; Mark Baumert; Nina Ogrinc Potočnik; Mark Allen; Rob J. Vreeken; Ron M. A. Heeren; Tiffany Porta

Direct analysis by mass spectrometry (imaging) has become increasingly deployed in preclinical and clinical research due to its rapid and accurate readouts. However, when it comes to biomarker discovery or histopathological diagnostics, more sensitive and in-depth profiling from localized areas is required. We developed a comprehensive, fully automated online platform for high-resolution liquid extraction surface analysis (HR-LESA) followed by micro–liquid chromatography (LC) separation and a data-independent acquisition strategy for untargeted and low abundant analyte identification directly from tissue sections. Applied to tissue sections of rat pituitary, the platform demonstrated improved spatial resolution, allowing sample areas as small as 400 μm to be studied, a major advantage over conventional LESA. The platform integrates an online buffer exchange and washing step for removal of salts and other endogenous contamination that originates from local tissue extraction. Our carry over–free platform showed high reproducibility, with an interextraction variability below 30%. Another strength of the platform is the additional selectivity provided by a postsampling gas-phase ion mobility separation. This allowed distinguishing coeluted isobaric compounds without requiring additional separation time. Furthermore, we identified untargeted and low-abundance analytes, including neuropeptides deriving from the pro-opiomelanocortin precursor protein and localized a specific area of the pituitary gland (i.e., adenohypophysis) known to secrete neuropeptides and other small metabolites related to development, growth, and metabolism. This platform can thus be applied for the in-depth study of small samples of complex tissues with histologic features of ∼400 μm or more, including potential neuropeptide markers involved in many diseases such as neurodegenerative diseases, obesity, bulimia, and anorexia nervosa.


Archive | 2017

Mass Spectrometry Imaging of Drugs of Abuse in Hair

Bryn Flinders; Eva Cuypers; Tiffany Porta; Emmanuel Varesio; Gérard Hopfgartner; Ron M. A. Heeren

Hair testing is a powerful tool routinely used for the detection of drugs of abuse. The analysis of hair is highly advantageous as it can provide prolonged drug detectability versus that in biological fluids and chronological information about drug intake based on the average growth of hair. However, current methodology requires large amounts of hair samples and involves complex time-consuming sample preparation followed by gas or liquid chromatography coupled with mass spectrometry. Mass spectrometry imaging is increasingly being used for the analysis of single hair samples, as it provides more accurate and visual chronological information in single hair samples.Here, two methods for the preparation of single hair samples for mass spectrometry imaging are presented.The first uses an in-house built cutting apparatus to prepare longitudinal sections, the second is a method for embedding and cryo-sectioning hair samples in order to prepare cross-sections all along the hair sample.


Microscopy and Microanalysis | 2015

Multimodal molecular imaging: Insight into the complexity of biological surfaces through speed, resolution and identification

Ron M. A. Heeren; Anne L. Bruinen; Nadine E. Mascini; Gregory L. Fisher; Tiffany Porta; Shane R. Ellis

The chemical complexity of biological surfaces is highly dynamic and subject to local changes in response to a changing environment. This chemical heterogeneity is a particular important parameter when considering treatment of diseases such as cancer. It is this inconceivably complex heterogeneity that makes tumors so difficult to treat as no single therapy targets all permutations of phenotypes and environment precisely. This implies that to make truly personalized tumor therapy reality a diagnostic method is needed that unravels this spatial and molecular complexity of tumor tissue.


Analytical Chemistry | 2018

Targeted Drug and Metabolite Imaging: Desorption Electrospray Ionization combined with Triple Quadrupole Mass Spectrometry

Lieke Lamont; Gert B. Eijkel; Emrys A. Jones; Bryn Flinders; Shane R. Ellis; Tiffany Porta; Ron M. A. Heeren; Rob J. Vreeken

Mass spectrometry imaging (MSI) has proven to be a valuable tool for drug and metabolite imaging in pharmaceutical toxicology studies and can reveal, for example, accumulation of drug candidates in early drug development. However, the lack of sample cleanup and chromatographic separation can hamper the analysis due to isobaric interferences. Multiple reaction monitoring (MRM) uses unique precursor ion-product ion transitions to add specificity which leads to higher selectivity. Here, we present a targeted imaging platform where desorption electrospray ionization is combined with a triple quadrupole (QqQ) system to perform MRM imaging. The platform was applied to visualize (i) lipids in mouse brain tissue sections and (ii) a drug candidate and metabolite in canine liver tissue. All QqQ modes were investigated to show the increased detection time provided by MRM as well as the possibility to perform dual polarity imaging. This is very beneficial for lipid imaging because some phospholipid classes ionize in opposite polarity (e.g., phosphatidylcholine/sphingomyelin in positive ion mode and phosphatidylserine/phosphatidylethanolamine in negative ion mode). Drug and metabolite images were obtained to show its strength in drug distribution studies. Multiple MRM transitions were used to confirm the local presence and selective detection of pharmaceutical compounds.

Collaboration


Dive into the Tiffany Porta's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge