Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tihana Lenac Roviš is active.

Publication


Featured researches published by Tihana Lenac Roviš.


Science | 2015

A shed NKG2D ligand that promotes natural killer cell activation and tumor rejection

Weiwen Deng; Benjamin G. Gowen; Li Zhang; Lin Wang; Stephanie Lau; Alexandre Iannello; Jianfeng Xu; Tihana Lenac Roviš; Na Xiong; David H. Raulet

Immune cells, including natural killer (NK) cells, recognize transformed cells and eliminate them in a process termed immunosurveillance. It is thought that tumor cells evade immunosurveillance by shedding membrane ligands that bind to the NKG2D-activating receptor on NK cells and/or T cells, and desensitize these cells. In contrast, we show that in mice, a shed form of MULT1, a high-affinity NKG2D ligand, causes NK cell activation and tumor rejection. Recombinant soluble MULT1 stimulated tumor rejection in mice. Soluble MULT1 functions, at least in part, by competitively reversing a global desensitization of NK cells imposed by engagement of membrane NKG2D ligands on tumor-associated cells, such as myeloid cells. The results overturn conventional wisdom that soluble ligands are always inhibitory and suggest a new approach for cancer immunotherapy. Soluble proteins shed by tumors stimulate natural killer cell–mediated antitumor immunity in mice. [Also see Perspective by Steinle and Cerwenka] Natural born killers for tumors Cancer immunotherapies work by activating cytotoxic lymphocytes, usually CD8+ T cells, to kill tumors. But adding new approaches to the arsenal might boost these therapies. Deng et al. now report that natural killer (NK) cells, another type of lymphocyte, can also kill tumors (see the Perspective by Steinle and Cerwenka). Mouse tumors secrete a protein called MULT1 that binds to a protein called NKG2D on the surface of NK cells. This activates NK cells and signals them to kill the tumor cells. Treating tumorbearing mice with soluble MULT1 caused their NK cells to reject the tumors. Science, this issue p. 136; see also p. 45


European Journal of Immunology | 2013

Mouse TIGIT inhibits NK-cell cytotoxicity upon interaction with PVR

Noa Stanietsky; Tihana Lenac Roviš; Ariella Glasner; Einat Seidel; Pinchas Tsukerman; Rachel Yamin; Jonatan Enk; Stipan Jonjić; Ofer Mandelboim

The activity of natural killer (NK) cells is controlled by a balance of signals derived from inhibitory and activating receptors. TIGIT is a novel inhibitory receptor, recently shown in humans to interact with two ligands: PVR and Nectin2 and to inhibit human NK‐cell cytotoxicity. Whether mouse TIGIT (mTIGIT) inhibits mouse NK‐cell cytotoxicity is unknown. Here we show that mTIGIT is expressed by mouse NK cells and interacts with mouse PVR. Using mouse and human Ig fusion proteins we show that while the human TIGIT (hTIGIT) cross‐reacts with mouse PVR (mPVR), the binding of mTIGIT is restricted to mPVR. We further demonstrate using surface plasmon resonance (SPR) and staining with Ig fusion proteins that mTIGIT binds to mPVR with higher affinity than the co‐stimulatory PVR‐binding receptor mouse DNAM1 (mDNAM1). Functionally, we show that triggering of mTIGIT leads to the inhibition of NK‐cell cytotoxicity, that IFN‐γ secretion is enhanced when mTIGIT is blocked and that the TIGIT‐mediated inhibition is dominant over the signals delivered by the PVR‐binding co‐stimulatory receptors. Additionally, we identify the inhibitory motif responsible for mTIGIT inhibition. In conclusion, we show that TIGIT is a powerful inhibitory receptor for mouse NK cells.


PLOS ONE | 2012

Elucidating the Mechanisms of Influenza Virus Recognition by Ncr1

Ariella Glasner; Antonija Zurunic; Tal Meningher; Tihana Lenac Roviš; Pinchas Tsukerman; Yotam Bar-On; Rachel Yamin; Adrienne F.A. Meyers; Michal Mandeboim; Stipan Jonjić; Ofer Mandelboim

Natural killer (NK) cells are innate cytotoxic lymphocytes that specialize in the defense against viral infection and oncogenic transformation. Their action is tightly regulated by signals derived from inhibitory and activating receptors; the later include proteins such as the Natural Cytotoxicity Receptors (NCRs: NKp46, NKp44 and NKp30). Among the NCRs, NKp46 is the only receptor that has a mouse orthologue named Ncr1. NKp46/Ncr1 is also a unique marker expressed on NK and on Lymphoid tissue inducer (LTI) cells and it was implicated in the control of various viral infections, cancer and diabetes. We have previously shown that human NKp46 recognizes viral hemagglutinin (HA) in a sialic acid-dependent manner and that the O-glycosylation is essential for the NKp46 binding to viral HA. Here we studied the molecular interactions between Ncr1 and influenza viruses. We show that Ncr1 recognizes influenza virus in a sialic acid dependent manner and that N-glycosylation is important for this binding. Surprisingly we demonstrate that none of the predicted N-glycosilated residues of Ncr1 are essential for its binding to influenza virus and we thus conclude that other, yet unidentified N-glycosilated residues are responsible for its recognition. We have demonstrated that N glycosylation play little role in the recognition of mouse tumor cell lines and also showed the in-vivo importance of Ncr1 in the control of influenza virus infection by infecting C57BL/6 and BALB/c mice knockout for Ncr1 with influenza.


Molecular Immunology | 2009

Promiscuity of MCMV immunoevasin of NKG2D: m138/fcr-1 down-modulates RAE-1ɛ in addition to MULT-1 and H60

Jurica Arapović; Tihana Lenac Roviš; Anil Butchi Reddy; Astrid Krmpotić; Stipan Jonjić

Both human and mouse cytomegalovirus (CMV) encode proteins that inhibit the activation of NK cells by down-regulating the cellular ligands for activating NK cell receptor, NKG2D. MCMV proteins m145, m152 and m155 interfere with the expression of all known NKG2D ligands, MULT-1, RAE-1 family members and H60, respectively, whereas m138 affects the expression of MULT-1 and H60. Here we show that m152 affects the maturation of newly synthesized RAE-1 molecules, but is not sufficient to prevent surface expression of RAE-1varepsilon. We have identified m138 as a main inhibitor of the surface expression of RAE-1varepsilon. In contrast to m152, m138 affects the surface-resident protein leading to its endocytosis, which can be prevented by a dynamin inhibitor. Moreover, we demonstrated that m138 does not need other viral proteins to down-modulate the expression of RAE-1varepsilon.


European Journal of Immunology | 2013

The interaction between CD300a and phosphatidylserine inhibits tumor cell killing by NK cells

Dikla Lankry; Tihana Lenac Roviš; Stipan Jonjić; Ofer Mandelboim

The activity of NK cells is controlled by inhibitory and activating receptors. The inhibitory receptors interact mostly with MHC class I proteins, however, inhibitory receptors such as CD300a, which bind to non‐MHC class I ligands, also exist. Recently, it was discovered that phosphatidylserine (PS) is a ligand for CD300a and that the interaction between PS expressed on apoptotic cells and CD300a inhibits the uptake of apoptotic cells by phagocytic cells. Whether PS can inhibit NK‐cell activity through CD300a is unknown. Here, we have generated specific antibodies directed against CD300a and we used these mAbs to demonstrate that various NK‐cell clones express different levels of CD300a. We further demonstrated that both CD300a and its highly homologous molecule CD300c bind to the tumor cells equally well and that they recognize PS and additional unknown ligand(s) expressed by tumor cells. Finally, we showed that blocking the PS–CD300a interaction resulted in increased NK‐cell killing of tumor cells. Collectively, we demonstrate a new tumor immune evasion mechanism that is mediated through the interaction between PS and CD300a and we suggest that CD300c, similarly to CD300a, also interacts with PS.


Journal of Virology | 2013

Comprehensive Analysis of Varicella-Zoster Virus Proteins Using a New Monoclonal Antibody Collection

Tihana Lenac Roviš; Susanne M. Bailer; Venkata R. Pothineni; Werner J. D. Ouwendijk; Hrvoje Šimić; Marina Babic; Karmela Miklić; Suzana Malić; Marieke C. Verweij; Armin Baiker; Orland Gonzalez; Albrecht von Brunn; Ralf Zimmer; Klaus Früh; Georges M. G. M. Verjans; Stipan Jonjić; Jürgen Haas

ABSTRACT Varicella-zoster virus (VZV) is the etiological agent of chickenpox and shingles. Due to the viruss restricted host and cell type tropism and the lack of tools for VZV proteomics, it is one of the least-characterized human herpesviruses. We generated 251 monoclonal antibodies (MAbs) against 59 of the 71 (83%) currently known unique VZV proteins to characterize VZV protein expression in vitro and in situ. Using this new set of MAbs, 44 viral proteins were detected by Western blotting (WB) and indirect immunofluorescence (IF); 13 were detected by WB only, and 2 were detected by IF only. A large proportion of viral proteins was analyzed for the first time in the context of virus infection. Our study revealed the subcellular localization of 46 proteins, 14 of which were analyzed in detail by confocal microscopy. Seven viral proteins were analyzed in time course experiments and showed a cascade-like temporal gene expression pattern similar to those of other herpesviruses. Furthermore, selected MAbs tested positive on human skin lesions by using immunohistochemistry, demonstrating the wide applicability of the MAb collection. Finally, a significant portion of the VZV-specific antibodies reacted with orthologs of simian varicella virus (SVV), thus enabling the systematic analysis of varicella in a nonhuman primate model system. In summary, this study provides insight into the potential function of numerous VZV proteins and novel tools to systematically study VZV and SVV pathogenesis.


Journal of Virology | 2016

The Essential Human Cytomegalovirus Proteins pUL77 and pUL93 Are Structural Components Necessary for Viral Genome Encapsidation

Eva Maria Borst; Rudolf Bauerfeind; Anne Binz; Thomas Min Stephan; Sebastian Neuber; Karen Wagner; Lars Steinbrück; Beate Sodeik; Tihana Lenac Roviš; Stipan Jonjić; Martin Messerle

ABSTRACT Several essential viral proteins are proposed to participate in genome encapsidation of human cytomegalovirus (HCMV), among them pUL77 and pUL93, which remain largely uncharacterized. To gain insight into their properties, we generated an HCMV mutant expressing a pUL77-monomeric enhanced green fluorescent protein (mGFP) fusion protein and a pUL93-specific antibody. Immunoblotting demonstrated that both proteins are incorporated into capsids and virions. Conversely to data suggesting internal translation initiation sites within the UL93 open reading frame (ORF), we provide evidence that pUL93 synthesis commences at the first start codon. In infected cells, pUL77-mGFP was found in nuclear replication compartments and dot-like structures, colocalizing with capsid proteins. Immunogold labeling of nuclear capsids revealed that pUL77 is present on A, B, and C capsids. Pulldown of pUL77-mGFP revealed copurification of pUL93, indicating interaction between these proteins, which still occurred when capsid formation was prevented. Correct subnuclear distribution of pUL77-mGFP required pUL93 as well as the major capsid protein (and thus probably the presence of capsids), but not the tegument protein pp150 or the encapsidation protein pUL52, demonstrating that pUL77 nuclear targeting occurs independently of the formation of DNA-filled capsids. When pUL77 or pUL93 was missing, generation of unit-length genomes was not observed, and only empty B capsids were produced. Taken together, these results show that pUL77 and pUL93 are capsid constituents needed for HCMV genome encapsidation. Therefore, the task of pUL77 seems to differ from that of its alphaherpesvirus orthologue pUL25, which exerts its function subsequent to genome cleavage-packaging. IMPORTANCE The essential HCMV proteins pUL77 and pUL93 were suggested to be involved in viral genome cleavage-packaging but are poorly characterized both biochemically and functionally. By producing a monoclonal antibody against pUL93 and generating an HCMV mutant in which pUL77 is fused to a fluorescent protein, we show that pUL77 and pUL93 are capsid constituents, with pUL77 being similarly abundant on all capsid types. Each protein is required for genome encapsidation, as the absence of either pUL77 or pUL93 results in a genome packaging defect with the formation of empty capsids only. This distinguishes pUL77 from its alphaherpesvirus orthologue pUL25, which is enriched on DNA-filled capsids and exerts its function after the viral DNA is packaged. Our data for the first time describe an HCMV mutant with a fluorescent capsid and provide insight into the roles of pUL77 and pUL93, thus contributing to a better understanding of the HCMV encapsidation network.


Journal of Experimental Medicine | 2016

Inflammatory monocytes and NK cells play a crucial role in DNAM-1–dependent control of cytomegalovirus infection

Tihana Lenac Roviš; Paola Kučan Brlić; Noa S. Kaynan; Vanda Juranić Lisnić; Ilija Brizić; Stefan Jordan; Adriana Tomić; Daria Kveštak; Marina Babic; Pinchas Tsukerman; Marco Colonna; Ulrich H. Koszinowski; Martin Messerle; Ofer Mandelboim; Astrid Krmpotić; Stipan Jonjić

Jonjic et al. show that inflammatory macrophages play an essential role in the control of murine CMV (MCMV) infection through a DNAM-1–PVR pathway.


Seminars in Immunopathology | 2014

MCMV avoidance of recognition and control by NK cells.

Ilija Brizić; Tihana Lenac Roviš; Astrid Krmpotić; Stipan Jonjić

Natural killer (NK) cells play an important role in virus control during infection. Many viruses have developed mechanisms for subversion of NK cell responses. Murine cytomegalovirus (MCMV) is exceptionally successful in avoiding NK cell control. Here, we summarize the major MCMV evasion mechanisms targeting NK cell functions and their role in viral pathogenesis. The mechanisms by which NK cells regulate CD8+ T cell response, particularly with respect to the role of NK cell receptors recognizing viral antigens, are discussed. In addition, we discuss the role of NK cell receptors in generation and maintenance of memory NK cells. Final part of this review illustrates how the NK cell response and its viral regulation can be exploited in designing recombinant viral vectors able to induce robust and protective CD8+ T cell response.


Journal of Virology | 2013

ORF11 Protein Interacts with the ORF9 Essential Tegument Protein in Varicella-Zoster Virus Infection

Xibing Che; Stefan L. Oliver; Mike Reichelt; Marvin Sommer; Jürgen Haas; Tihana Lenac Roviš; Ann M. Arvin

ABSTRACT The tegument proteins encoded by ORF11 and ORF9 of varicella-zoster virus (VZV) are conserved among all alphaherpesvirus. We previously demonstrated that the ORF9 gene is essential, whereas ORF11 is dispensable in vitro but its deletion severely impairs VZV infection of skin xenografts in the SCID mouse model in vivo. Here we report that ORF11 protein interacts with ORF9 protein in infected cells as well as in the absence of other viral proteins, and we have mapped the ORF11 protein domain involved in their interaction. Although ORF11 is an RNA binding protein, the interaction between ORF11 and ORF9 proteins was not mediated by RNA or DNA bridging. VZV recombinants with mutations preventing ORF11 protein binding to ORF9 protein had no effect on 6-day growth kinetics based on plaque numbers, but plaque sizes were reduced in vitro. However, disruption of the ORF11 and ORF9 protein interaction was associated with failure to replicate in skin xenografts in vivo. Further, we demonstrate that in the absence of their interaction, the ORF9 protein displays an identical cellular localization, accumulating in the trans-Golgi region, whereas the ORF11 protein exhibits aberrant localization, dispersing throughout the cytoplasm. Overall, our observations suggest that while complete tegument assembly may not be necessary for VZV replication in vitro, the interaction between the ORF11 and ORF9 proteins appears to be critical for the proper localization of ORF11 protein to the assembly complex and for production of infectious virus during VZV pathogenesis in skin.

Collaboration


Dive into the Tihana Lenac Roviš's collaboration.

Top Co-Authors

Avatar

Stipan Jonjić

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar

Ofer Mandelboim

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar

Pinchas Tsukerman

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge