Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tiina Tosens is active.

Publication


Featured researches published by Tiina Tosens.


Plant Science | 2012

Mesophyll diffusion conductance to CO2: An unappreciated central player in photosynthesis

Jaume Flexas; Margaret M. Barbour; Oliver Brendel; Hernán M. Cabrera; Marc Carriquí; Antonio Diaz-Espejo; Cyril Douthe; Erwin Dreyer; Juan Pedro Ferrio; Jorge Gago; Alexander Gallé; Jeroni Galmés; Naomi Kodama; Hipólito Medrano; Ülo Niinemets; José Javier Peguero-Pina; Alicia Pou; Miquel Ribas-Carbo; M. Tomás; Tiina Tosens; Charles R. Warren

Mesophyll diffusion conductance to CO(2) is a key photosynthetic trait that has been studied intensively in the past years. The intention of the present review is to update knowledge of g(m), and highlight the important unknown and controversial aspects that require future work. The photosynthetic limitation imposed by mesophyll conductance is large, and under certain conditions can be the most significant photosynthetic limitation. New evidence shows that anatomical traits, such as cell wall thickness and chloroplast distribution are amongst the stronger determinants of mesophyll conductance, although rapid variations in response to environmental changes might be regulated by other factors such as aquaporin conductance. Gaps in knowledge that should be research priorities for the near future include: how different is mesophyll conductance among phylogenetically distant groups and how has it evolved? Can mesophyll conductance be uncoupled from regulation of the water path? What are the main drivers of mesophyll conductance? The need for mechanistic and phenomenological models of mesophyll conductance and its incorporation in process-based photosynthesis models is also highlighted.


Journal of Experimental Botany | 2013

Importance of leaf anatomy in determining mesophyll diffusion conductance to CO2 across species: quantitative limitations and scaling up by models

M. Tomás; Jaume Flexas; Lucian Copolovici; Jeroni Galmés; Lea Hallik; Hipólito Medrano; Miquel Ribas-Carbo; Tiina Tosens; Vivian Vislap; Ülo Niinemets

Foliage photosynthetic and structural traits were studied in 15 species with a wide range of foliage anatomies to gain insight into the importance of key anatomical traits in the limitation of diffusion of CO2 from substomatal cavities to chloroplasts. The relative importance of different anatomical traits in constraining CO2 diffusion was evaluated using a quantitative model. Mesophyll conductance (g m) was most strongly correlated with chloroplast exposed surface to leaf area ratio (S c/S) and cell wall thickness (T cw), but, depending on foliage structure, the overall importance of g m in constraining photosynthesis and the importance of different anatomical traits in the restriction of CO2 diffusion varied. In species with mesophytic leaves, membrane permeabilities and cytosol and stromal conductance dominated the variation in g m. However, in species with sclerophytic leaves, g m was mostly limited by T cw. These results demonstrate the major role of anatomy in constraining mesophyll diffusion conductance and, consequently, in determining the variability in photosynthetic capacity among species.


Plant Cell and Environment | 2012

Developmental changes in mesophyll diffusion conductance and photosynthetic capacity under different light and water availabilities in Populus tremula: how structure constrains function.

Tiina Tosens; Ülo Niinemets; Vivian Vislap; Hillar Eichelmann; Pilar Castro Díez

Finite mesophyll diffusion conductance (g(m) ) significantly constrains net assimilation rate (A(n) ), but g(m) variations and variation sources in response to environmental stresses during leaf development are imperfectly known. The combined effects of light and water limitations on g(m) and diffusion limitations of photosynthesis were studied in saplings of Populus tremula L. An one-dimensional diffusion model was used to gain insight into the importance of key anatomical traits in determining g(m) . Leaf development was associated with increases in dry mass per unit area, thickness, density, exposed mesophyll (S(mes) /S) and chloroplast (S(c) /S) to leaf area ratio, internal air space (f(ias) ), cell wall thickness and chloroplast dimensions. Development of S(mes) /S and S(c) /S was delayed under low light. Reduction in light availability was associated with lower S(c) /S, but with larger f(ias) and chloroplast thickness. Water stress reduced S(c) /S and increased cell wall thickness under high light. In all treatments, g(m) and A(n) increased and CO(2) drawdown because of g(m) , C(i) -C(c) , decreased with increasing leaf age. Low light and drought resulted in reduced g(m) and A(n) and increased C(i) -C(c) . These results emphasize the importance of g(m) and its components in determining A(n) variations during leaf development and in response to stress.


Journal of Experimental Botany | 2012

Anatomical basis of variation in mesophyll resistance in eastern Australian sclerophylls: news of a long and winding path

Tiina Tosens; Ülo Niinemets; Mark Westoby; Ian J. Wright

In sclerophylls, photosynthesis is particularly strongly limited by mesophyll diffusion resistance from substomatal cavities to chloroplasts (r m), but the controls on diffusion limits by integral leaf variables such as leaf thickness, density, and dry mass per unit area and by the individual steps along the diffusion pathway are imperfectly understood. To gain insight into the determinants of r m in leaves with varying structure, the full CO2 physical diffusion pathway was analysed in 32 Australian species sampled from sites contrasting in soil nutrients and rainfall, and having leaf structures from mesophytic to strongly sclerophyllous. r m was estimated based on combined measurements of gas exchange and chlorophyll fluorescence. In addition, r m was modelled on the basis of detailed anatomical measurements to separate the importance of different serial resistances affecting CO2 diffusion into chloroplasts. The strongest sources of variation in r m were S c/S, the exposed surface area of chloroplasts per unit leaf area, and mesophyll cell wall thickness, t cw. The strong correlation of r m with t cw could not be explained by cell wall thickness alone, and most likely arose from a further effect of cell wall porosity. The CO2 drawdown from intercellular spaces to chloroplasts was positively correlated with t cw, suggesting enhanced diffusional limitations in leaves with thicker cell walls. Leaf thickness and density were poorly correlated with S c/S, indicating that widely varying combinations of leaf anatomical traits occur at given values of leaf integrated traits, and suggesting that detailed anatomical studies are needed to predict r m for any given species.


New Phytologist | 2016

The photosynthetic capacity in 35 ferns and fern allies: mesophyll CO2 diffusion as a key trait

Tiina Tosens; Keisuke Nishida; Jorge Gago; Rafael E. Coopman; Hernán M. Cabrera; Marc Carriquí; Lauri Laanisto; Loreto V. Morales; Miquel Nadal; Roke Rojas; Eero Talts; M. Tomás; Yuko T. Hanba; Ülo Niinemets; Jaume Flexas

Ferns and fern allies have low photosynthetic rates compared with seed plants. Their photosynthesis is thought to be limited principally by physical CO2 diffusion from the atmosphere to chloroplasts. The aim of this study was to understand the reasons for low photosynthesis in species of ferns and fern allies (Lycopodiopsida and Polypodiopsida). We performed a comprehensive assessment of the foliar gas-exchange and mesophyll structural traits involved in photosynthetic function for 35 species of ferns and fern allies. Additionally, the leaf economics spectrum (the interrelationships between photosynthetic capacity and leaf/frond traits such as leaf dry mass per unit area or nitrogen content) was tested. Low mesophyll conductance to CO2 was the main cause for low photosynthesis in ferns and fern allies, which, in turn, was associated with thick cell walls and reduced chloroplast distribution towards intercellular mesophyll air spaces. Generally, the leaf economics spectrum in ferns follows a trend similar to that in seed plants. Nevertheless, ferns and allies had less nitrogen per unit DW than seed plants (i.e. the same slope but a different intercept) and lower photosynthesis rates per leaf mass area and per unit of nitrogen.


New Phytologist | 2017

Physiological and structural tradeoffs underlying the leaf economics spectrum

Yusuke Onoda; Ian J. Wright; John R. Evans; Kouki Hikosaka; Kaoru Kitajima; Ülo Niinemets; Hendrik Poorter; Tiina Tosens; Mark Westoby

The leaf economics spectrum (LES) represents a suite of intercorrelated leaf traits concerning construction costs per unit leaf area, nutrient concentrations, and rates of carbon fixation and tissue turnover. Although broad trade-offs among leaf structural and physiological traits have been demonstrated, we still do not have a comprehensive view of the fundamental constraints underlying the LES trade-offs. Here, we investigated physiological and structural mechanisms underpinning the LES by analysing a novel data compilation incorporating rarely considered traits such as the dry mass fraction in cell walls, nitrogen allocation, mesophyll CO2 diffusion and associated anatomical traits for hundreds of species covering major growth forms. The analysis demonstrates that cell wall constituents are major components of leaf dry mass (18-70%), especially in leaves with high leaf mass per unit area (LMA) and long lifespan. A greater fraction of leaf mass in cell walls is typically associated with a lower fraction of leaf nitrogen (N) invested in photosynthetic proteins; and lower within-leaf CO2 diffusion rates, as a result of thicker mesophyll cell walls. The costs associated with greater investments in cell walls underpin the LES: long leaf lifespans are achieved via higher LMA and in turn by higher cell wall mass fraction, but this inevitably reduces the efficiency of photosynthesis.


Journal of Experimental Botany | 2017

Extremely thick cell walls and low mesophyll conductance: welcome to the world of ancient living!

Linda-Liisa Veromann-Jürgenson; Tiina Tosens; Lauri Laanisto; Ülo Niinemets

Highlight Low mesophyll conductance was the most important limiter of photosynthesis in the majority of evolutionarily old species and resulted from thick cell walls and low exposed chloroplast area.


Plant Cell and Environment | 2018

Glandular trichomes as a barrier against atmospheric oxidative stress: Relationships with ozone uptake, leaf damage, and emission of LOX products across a diverse set of species: Glandular trichomes promote ozone resistance

Shuai Li; Tiina Tosens; Peter Harley; Yifan Jiang; Arooran Kanagendran; Mirjam Grosberg; Kristen Jaamets; Ülo Niinemets

There is a spectacular variability in trichome types and densities and trichome metabolites across species, but the functional implications of this variability in protecting from atmospheric oxidative stresses remain poorly understood. The aim of this study was to evaluate the possible protective role of glandular and non-glandular trichomes against ozone stress. We investigated the interspecific variation in types and density of trichomes and how these traits were associated with elevated ozone impacts on visible leaf damage, net assimilation rate, stomatal conductance, chlorophyll fluorescence, and emissions of lipoxygenase pathway products in 24 species with widely varying trichome characteristics and taxonomy. Both peltate and capitate glandular trichomes played a critical role in reducing leaf ozone uptake, but no impact of non-glandular trichomes was observed. Across species, the visible ozone damage varied 10.1-fold, reduction in net assimilation rate 3.3-fold, and release of lipoxygenase compounds 14.4-fold, and species with lower glandular trichome density were more sensitive to ozone stress and more vulnerable to ozone damage compared to species with high glandular trichome density. These results demonstrate that leaf surface glandular trichomes constitute a major factor in reducing ozone toxicity and function as a chemical barrier that neutralizes the ozone before it enters the leaf.


Plant Cell and Environment | 2005

Leaf internal diffusion conductance limits photosynthesis more strongly in older leaves of Mediterranean evergreen broad-leaved species

Ülo Niinemets; Alessandro Cescatti; Mirco Rodeghiero; Tiina Tosens


Plant Cell and Environment | 2006

Complex adjustments of photosynthetic potentials and internal diffusion conductance to current and previous light availabilities and leaf age in Mediterranean evergreen species Quercus ilex

Ülo Niinemets; Alessandro Cescatti; Mirco Rodeghiero; Tiina Tosens

Collaboration


Dive into the Tiina Tosens's collaboration.

Top Co-Authors

Avatar

Ülo Niinemets

Estonian University of Life Sciences

View shared research outputs
Top Co-Authors

Avatar

Jaume Flexas

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

M. Tomás

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Miquel Ribas-Carbo

Carnegie Institution for Science

View shared research outputs
Top Co-Authors

Avatar

Hipólito Medrano

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Jeroni Galmés

University of the Balearic Islands

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eero Talts

Estonian University of Life Sciences

View shared research outputs
Top Co-Authors

Avatar

Lauri Laanisto

Estonian University of Life Sciences

View shared research outputs
Top Co-Authors

Avatar

Miguel Portillo-Estrada

Estonian University of Life Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge