Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tiit Teder is active.

Publication


Featured researches published by Tiit Teder.


Trends in Ecology and Evolution | 2009

Extinction debt: a challenge for biodiversity conservation

Mikko Kuussaari; Riccardo Bommarco; Risto K. Heikkinen; Aveliina Helm; Jochen Krauss; Regina Lindborg; Erik Öckinger; Meelis Pärtel; Joan Pino; Ferran Rodà; Constantí Stefanescu; Tiit Teder; Martin Zobel; Ingolf Steffan-Dewenter

Local extinction of species can occur with a substantial delay following habitat loss or degradation. Accumulating evidence suggests that such extinction debts pose a significant but often unrecognized challenge for biodiversity conservation across a wide range of taxa and ecosystems. Species with long generation times and populations near their extinction threshold are most likely to have an extinction debt. However, as long as a species that is predicted to become extinct still persists, there is time for conservation measures such as habitat restoration and landscape management. Standardized long-term monitoring, more high-quality empirical studies on different taxa and ecosystems and further development of analytical methods will help to better quantify extinction debt and protect biodiversity.


Ecology Letters | 2010

Habitat fragmentation causes immediate and time‐delayed biodiversity loss at different trophic levels

Jochen Krauss; Riccardo Bommarco; Moisès Guardiola; Risto K. Heikkinen; Aveliina Helm; Mikko Kuussaari; Regina Lindborg; Erik Öckinger; Meelis Pärtel; Joan Pino; Juha Pöyry; Katja M. Raatikainen; Anu Sang; Constantí Stefanescu; Tiit Teder; Martin Zobel; Ingolf Steffan-Dewenter

Intensification or abandonment of agricultural land use has led to a severe decline of semi-natural habitats across Europe. This can cause immediate loss of species but also time-delayed extinctions, known as the extinction debt. In a pan-European study of 147 fragmented grassland remnants, we found differences in the extinction debt of species from different trophic levels. Present-day species richness of long-lived vascular plant specialists was better explained by past than current landscape patterns, indicating an extinction debt. In contrast, short-lived butterfly specialists showed no evidence for an extinction debt at a time scale of c. 40 years. Our results indicate that management strategies maintaining the status quo of fragmented habitats are insufficient, as time-delayed extinctions and associated co-extinctions will lead to further biodiversity loss in the future.


Annual Review of Entomology | 2010

Sex Differences in Phenotypic Plasticity Affect Variation in Sexual Size Dimorphism in Insects: From Physiology to Evolution

R. Craig Stillwell; Wolf U. Blanckenhorn; Tiit Teder; Goggy Davidowitz; Charles W. Fox

Males and females of nearly all animals differ in their body size, a phenomenon called sexual size dimorphism (SSD). The degree and direction of SSD vary considerably among taxa, including among populations within species. A considerable amount of this variation is due to sex differences in body size plasticity. We examine how variation in these sex differences is generated by exploring sex differences in plasticity in growth rate and development time and the physiological regulation of these differences (e.g., sex differences in regulation by the endocrine system). We explore adaptive hypotheses proposed to explain sex differences in plasticity, including those that predict that plasticity will be lowest for traits under strong selection (adaptive canalization) or greatest for traits under strong directional selection (condition dependence), but few studies have tested these hypotheses. Studies that combine proximate and ultimate mechanisms offer great promise for understanding variation in SSD and sex differences in body size plasticity in insects.


The American Naturalist | 2007

Proximate Causes of Rensch’s Rule: Does Sexual Size Dimorphism in Arthropods Result from Sex Differences in Development Time?

Wolf U. Blanckenhorn; A. F. G. Dixon; Daphne J. Fairbairn; Matthias W. Foellmer; Patricia Gibert; Kim van der Linde; Rudolf Meier; Sören Nylin; Scott Pitnick; Christopher Schoff; Martino Signorelli; Tiit Teder; Christer Wiklund

A prominent interspecific pattern of sexual size dimorphism (SSD) is Rensch’s rule, according to which male body size is more variable or evolutionarily divergent than female body size. Assuming equal growth rates of males and females, SSD would be entirely mediated, and Rensch’s rule proximately caused, by sexual differences in development times, or sexual bimaturism (SBM), with the larger sex developing for a proportionately longer time. Only a subset of the seven arthropod groups investigated in this study exhibits Rensch’s rule. Furthermore, we found only a weak positive relationship between SSD and SBM overall, suggesting that growth rate differences between the sexes are more important than development time differences in proximately mediating SSD in a wide but by no means comprehensive range of arthropod taxa. Except when protandry is of selective advantage (as in many butterflies, Hymenoptera, and spiders), male development time was equal to (in water striders and beetles) or even longer than (in drosophilid and sepsid flies) that of females. Because all taxa show female‐biased SSD, this implies faster growth of females in general, a pattern markedly different from that of primates and birds (analyzed here for comparison). We discuss three potential explanations for this pattern based on life‐history trade‐offs and sexual selection.


Ecological Entomology | 2007

Achieving high sexual size dimorphism in insects: females add instars

Toomas Esperk; Toomas Tammaru; Sören Nylin; Tiit Teder

Abstract 1. In arthropods, the evolution of sexual size dimorphism (SSD) may be constrained by a physiological limit on growth within each particular larval instar. A high SSD could, however, be attained if the larvae of the larger sex pass through a higher number of larval instars.


Ecological Entomology | 2002

Cascading effects of variation in plant vigour on the relative performance of insect herbivores and their parasitoids

Tiit Teder; Toomas Tammaru

Abstract 1. Consequences of variation in food plant quality were estimated for a system consisting of two monophagous noctuid herbivores and three ichneumonid parasitoids.


Science | 2017

Higher predation risk for insect prey at low latitudes and elevations

Tomas Roslin; Bess Hardwick; Vojtech Novotny; William K. Petry; Nigel R. Andrew; Ashley Asmus; Isabel C. Barrio; Yves Basset; Andrea Larissa Boesing; Timothy C. Bonebrake; Erin K. Cameron; Wesley Dáttilo; David A. Donoso; Pavel Drozd; Claudia L. Gray; David S. Hik; Sarah J. Hill; Tapani Hopkins; Shuyin Huang; Bonny Koane; Benita Laird-Hopkins; Owen T. Lewis; Sol Milne; Isaiah Mwesige; Akihiro Nakamura; Colleen S. Nell; Elizabeth Nichols; Alena Prokurat; Katerina Sam; Niels Martin Schmidt

Risky in the tropics It is well known that diversity increases toward the tropics. Whether this increase translates into differences in interaction rates among species, however, remains unclear. To simplify the problem, Roslin et al. tested for predation rates by using a single approach involving model caterpillars across six continents. Predator attack rates were higher toward the equator, but only for arthropod predators. Science, this issue p. 742 Like diversity, predation rates among insects increase toward the equator and at lower altitudes. Biotic interactions underlie ecosystem structure and function, but predicting interaction outcomes is difficult. We tested the hypothesis that biotic interaction strength increases toward the equator, using a global experiment with model caterpillars to measure predation risk. Across an 11,660-kilometer latitudinal gradient spanning six continents, we found increasing predation toward the equator, with a parallel pattern of increasing predation toward lower elevations. Patterns across both latitude and elevation were driven by arthropod predators, with no systematic trend in attack rates by birds or mammals. These matching gradients at global and regional scales suggest consistent drivers of biotic interaction strength, a finding that needs to be integrated into general theories of herbivory, community organization, and life-history evolution.


Evolutionary Ecology | 2010

Proximate sources of sexual size dimorphism in insects: locating constraints on larval growth schedules

Toomas Tammaru; Toomas Esperk; Vitali Ivanov; Tiit Teder

Different levels of sexual size dimorphism (SSD) have usually been explained by selective forces operating in the adult stage. Developmental mechanisms leading to SSD during the juvenile development have received less attention. In particular, it is often not clear if the individuals of the ultimately larger sex are larger already at hatching/birth, do they grow faster, or do they grow for a longer time. In the case of insects, the question about sexually dimorphic growth rates is still open because most previous studies fail to adequately consider the complexity of larval growth curve, the existence of distinct larval instars in particular. Applying an instar-specific approach, we analysed ontogenetic determination of female-biased SSD in a number of distantly related species of Lepidoptera. The species studied showed a remarkable degree of similarity: SSD appeared invariably earlier than in the final instar, and tended to accumulate during development. The higher weight of the females was shown to be primarily a consequence of longer development within several larval instars. There was some evidence of higher instantaneous growth rates of females in the penultimate instar but not in the final instar. Egg size, studied in one species, was found not to be sexually dimorphic. The high across-species similarity may be seen as an indication of constraints on the set of possible mechanisms of size divergence between the two sexes. The results are discussed from the perspective of the evolution of insect body size in general. In particular, this study confirms the idea about limited evolvability of within-instar growth increments. An evolutionary change towards larger adult size appears always to be realised via moderate changes in relative increments of several larval instars, whereas a considerable change in just one instar may not be feasible.


Oecologia | 2010

Counterintuitive size patterns in bivoltine moths: late-season larvae grow larger despite lower food quality

Tiit Teder; Toomas Esperk; Triinu Remmel; Anu Sang; Toomas Tammaru

Within a season, successive generations of short-lived organisms experience different combinations of environmental parameters, such as temperature, food quality and mortality risk. Adult body size of e.g. insects is therefore expected to vary both as a consequence of proximate environmental effects as well as adaptive responses to seasonal cues. In this study, we examined intraspecific differences in body size between successive generations in 12 temperate bivoltine moths (Lepidoptera), with the ultimate goal to critically compare the role of proximate and adaptive mechanisms in determining seasonal size differences. In nearly all species, individuals developing late in the season (diapausing generation) attained a larger adult size than their conspecifics with the larval period early in the season (directly developing generation) despite the typically lower food quality in late summer. Rearing experiments conducted on one of the studied species, Selenia tetralunaria also largely exclude the possibility that the proximate effects of food quality and temperature are decisive in determining size differences between successive generations. Adaptive explanations appear likely instead: the larger body size in the diapausing generation may be adaptively associated with the lower bird predation pressure late in the season, and/or the likely advantage of large pupal size during overwintering.


Oecologia | 2000

Temporal and spatial variation of larval parasitism in non-outbreaking populations of a folivorous moth.

Tiit Teder; Miia Tanhuanpää; Kai Ruohomäki; Pekka Kaitaniemi; Janne Henriksson

Abstract In order to assess the role of parasitoids in the regulation of non-outbreaking populations of Epirrita autumnata, a geometrid lepidopteran with outbreaking populations in northern Europe, we examined the temporal and spatial variation of larval parasitism in southwestern Finland during 6 successive years. The study was carried out on two spatial scales, among trees within sites of about 1 ha and among sites separated by distances of 2–10 km, using experimental and observational approaches respectively. The overall percent parasitism was independent of host density on both spatial scales, while temporally it fluctuated only little. Of the two main parasitoids, the commoner one, Protapanteles immunis, showed a variable response to host density on the larger spatial scale and negative density dependence on the smaller scale. Temporally, parasitism caused by this species was independent of host density. Another parasitoid, Phobocampe bicingulata, showed positive density dependence on the smaller spatial scale and had a variable response on the larger scale, but exhibited negative density dependence over time. The results of this study caution against drawing conclusions concerning population regulation on the grounds of spatial density dependence alone. Larval parasitoids apparently do not maintain low densities in the E. autumnata populations studied. However, they may suppress E. autumnata densities to a level low enough for density-dependent mortality factor(s) to become regulating. Among other mortality factors of E. autumnata, pupal predation has been found to be temporally positively density-dependent.

Collaboration


Dive into the Tiit Teder's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge