Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tilde Eskildsen is active.

Publication


Featured researches published by Tilde Eskildsen.


Proceedings of the National Academy of Sciences of the United States of America | 2011

MicroRNA-138 regulates osteogenic differentiation of human stromal (mesenchymal) stem cells in vivo

Tilde Eskildsen; Hanna Taipaleenmäki; Jan Stenvang; Basem M. Abdallah; Nicholas Ditzel; A.Y. Nossent; Mads Bak; Sakari Kauppinen; Moustapha Kassem

Elucidating the molecular mechanisms that regulate human stromal (mesenchymal) stem cell (hMSC) differentiation into osteogenic lineage is important for the development of anabolic therapies for treatment of osteoporosis. MicroRNAs (miRNAs) are short, noncoding RNAs that act as key regulators of diverse biological processes by mediating translational repression or mRNA degradation of their target genes. Here, we show that miRNA-138 (miR-138) modulates osteogenic differentiation of hMSCs. miRNA array profiling and further validation by quantitative RT-PCR (qRT-PCR) revealed that miR-138 was down-regulated during osteoblast differentiation of hMSCs. Overexpression of miR-138 inhibited osteoblast differentiation of hMSCs in vitro, whereas inhibition of miR-138 function by antimiR-138 promoted expression of osteoblast-specific genes, alkaline phosphatase (ALP) activity, and matrix mineralization. Furthermore, overexpression of miR-138 reduced ectopic bone formation in vivo by 85%, and conversely, in vivo bone formation was enhanced by 60% when miR-138 was antagonized. Target prediction analysis and experimental validation by luciferase 3′ UTR reporter assay confirmed focal adhesion kinase, a kinase playing a central role in promoting osteoblast differentiation, as a bona fide target of miR-138. We show that miR-138 attenuates bone formation in vivo, at least in part by inhibiting the focal adhesion kinase signaling pathway. Our findings suggest that pharmacological inhibition of miR-138 by antimiR-138 could represent a therapeutic strategy for enhancing bone formation in vivo.


Cell Stem Cell | 2016

CRISPR Interference Efficiently Induces Specific and Reversible Gene Silencing in Human iPSCs

Mohammad A. Mandegar; Nathaniel Huebsch; Frolov Eb; Shin E; Annie Truong; Michael P. Olvera; Amanda H. Chan; Yuichiro Miyaoka; Holmes K; Spencer Ci; Luke M. Judge; David E. Gordon; Tilde Eskildsen; Jacqueline E. Villalta; Max A. Horlbeck; Luke A. Gilbert; Nevan J. Krogan; Søren Paludan Sheikh; Jonathan S. Weissman; Lei S. Qi; Po-Lin So; Bruce R. Conklin

Developing technologies for efficient and scalable disruption of gene expression will provide powerful tools for studying gene function, developmental pathways, and disease mechanisms. Here, we develop clustered regularly interspaced short palindromic repeat interference (CRISPRi) to repress gene expression in human induced pluripotent stem cells (iPSCs). CRISPRi, in which a doxycycline-inducible deactivated Cas9 is fused to a KRAB repression domain, can specifically and reversibly inhibit gene expression in iPSCs and iPSC-derived cardiac progenitors, cardiomyocytes, and T lymphocytes. This gene repression system is tunable and has the potential to silence single alleles. Compared with CRISPR nuclease (CRISPRn), CRISPRi gene repression is more efficient and homogenous across cell populations. The CRISPRi system in iPSCs provides a powerful platform to perform genome-scale screens in a wide range of iPSC-derived cell types, dissect developmental pathways, and model disease.


International Journal of Molecular Sciences | 2013

Angiotensin II Regulates microRNA-132/-212 in Hypertensive Rats and Humans

Tilde Eskildsen; Pia L Jeppesen; Mikael Schneider; A.Y. Nossent; Maria B. Sandberg; Pernille B. Lærkegaard Hansen; Charlotte Harken Jensen; Maria Lyck Hansen; Niels Marcussen; Lars Melholt Rasmussen; Peter Bie; Ditte Caroline Andersen; Søren Paludan Sheikh

MicroRNAs (miRNAs), a group of small non-coding RNAs that fine tune translation of multiple target mRNAs, are emerging as key regulators in cardiovascular development and disease. MiRNAs are involved in cardiac hypertrophy, heart failure and remodeling following cardiac infarction; however, miRNAs involved in hypertension have not been thoroughly investigated. We have recently reported that specific miRNAs play an integral role in Angiotensin II receptor (AT1R) signaling, especially after activation of the Gαq signaling pathway. Since AT1R blockers are widely used to treat hypertension, we undertook a detailed analysis of potential miRNAs involved in Angiotensin II (AngII) mediated hypertension in rats and hypertensive patients, using miRNA microarray and qPCR analysis. The miR-132 and miR-212 are highly increased in the heart, aortic wall and kidney of rats with hypertension (159 ± 12 mm Hg) and cardiac hypertrophy following chronic AngII infusion. In addition, activation of the endothelin receptor, another Gαq coupled receptor, also increased miR-132 and miR-212. We sought to extend these observations using human samples by reasoning that AT1R blockers may decrease miR-132 and miR-212. We analyzed tissue samples of mammary artery obtained from surplus arterial tissue after coronary bypass operations. Indeed, we found a decrease in expression levels of miR-132 and miR-212 in human arteries from bypass-operated patients treated with AT1R blockers, whereas treatment with β-blockers had no effect. Taken together, these data suggest that miR-132 and miR-212 are involved in AngII induced hypertension, providing a new perspective in hypertensive disease mechanisms.


PLOS ONE | 2013

miR-21 promotes fibrogenic epithelial-to-mesenchymal transition of epicardial mesothelial cells involving Programmed Cell Death 4 and Sprouty-1.

Hasse Brønnum; Ditte Caroline Andersen; Mikael Schneider; Maria B. Sandberg; Tilde Eskildsen; Solveig Beck Nielsen; Raghu Kalluri; Søren Paludan Sheikh

The lining of the adult heart contains epicardial mesothelial cells (EMCs) that have the potential to undergo fibrogenic Epithelial-to-Mesenchymal Transition (EMT) during cardiac injury. EMT of EMCs has therefore been suggested to contribute to the heterogeneous fibroblast pool that mediates cardiac fibrosis. However, the molecular basis of this process is poorly understood. Recently, microRNAs (miRNAs) have been shown to regulate a number of sub-cellular events in cardiac disease. Hence, we hypothesized that miRNAs regulate fibrogenic EMT in the adult heart. Indeed pro-fibrogenic stimuli, especially TGF-β, promoted EMT progression in EMC cultures, which resulted in differential expression of numerous miRNAs, especially the pleiotropic miR-21. Accordingly, ectopic expression of miR-21 substantially promoted the fibroblast-like phenotype arising from fibrogenic EMT, whereas an antagonist that targeted miR-21 blocked this effect, as assessed on the E-cadherin/α-smooth muscle actin balance, cell viability, matrix activity, and cell motility, thus making miR-21 a relevant target of EMC-derived fibrosis. Several mRNA targets of miR-21 was differentially regulated during fibrogenic EMT of EMCs and miR-21-dependent targeting of Programmed Cell Death 4 (PDCD4) and Sprouty Homolog 1 (SPRY1) significantly contributed to the development of a fibroblastoid phenotype. However, PDCD4- and SPRY1-targeting was not entirely ascribable to all phenotypic effects from miR-21, underscoring the pleiotropic biological role of miR-21 and the increasing number of recognized miR-21 targets.


Experimental Cell Research | 2010

MicroRNA-15a fine-tunes the level of Delta-like 1 homolog (DLK1) in proliferating 3T3-L1 preadipocytes

Ditte Caroline Andersen; Charlotte Harken Jensen; Mikael Schneider; A.Y. Nossent; Tilde Eskildsen; Jakob Lerche Hansen; Børge Teisner; Søren Paludan Sheikh

Delta like 1 homolog (Dlk1) exists in both transmembrane and soluble molecular forms, and is implicated in cellular growth and plays multiple roles in development, tissue regeneration, and cancer. Thus, DLK1 levels are critical for cell function, and abnormal DLK1 expression can be lethal; however, little is known about the underlying mechanisms. We here report that miR-15a modulates DLK1 levels in preadipocytes thus providing a mechanism for DLK1 regulation that further links it to cell cycle arrest and cancer since miR-15a is deregulated in these processes. In preadipocytes, miR-15a increases with cell density, and peaks at the same stage where membrane DLK1(M) and soluble DLK1(S) are found at maximum levels. Remarkably, miR-15a represses the amount of all Dlk1 variants at the mRNA level but also the level of DLK1(M) protein while it increases the amount of DLK1(S) supporting a direct repression of DLK1 and a parallel effect on the protease that cleaves off the DLK1 from the membrane. In agreement with previous studies, we found that miR-15a represses cell numbers, but additionally, we report that miR-15a also increases cell size. Conversely, anti-miR-15a treatment decreases cell size while increasing cell numbers, scenarios that were completely rescued by addition of purified DLK1(S). Our data thus imply that miR-15a regulates cell size and proliferation by fine-tuning Dlk1 among others, and further emphasize miR-15a and DLK1 levels to play important roles in growth signaling networks.


British Journal of Pharmacology | 2011

Angiotensin II type 1 receptor signalling regulates microRNA differentially in cardiac fibroblasts and myocytes

Pia L Jeppesen; Gitte Lund Christensen; Mikael Schneider; A.Y. Nossent; Hasse Brønnum Jensen; Ditte Caroline Andersen; Tilde Eskildsen; Steen Gammeltoft; Jakob Lerche Hansen; Søren Paludan Sheikh

BACKGROUND AND PURPOSE The angiotensin II type 1 receptor (AT1R) is a key regulator of blood pressure and cardiac contractility and is profoundly involved in development of cardiac disease. Since several microRNAs (miRNAs) have been implicated in cardiac disease, we determined whether miRNAs might be regulated by AT1R signals in a Gαq/11‐dependent or ‐independent manner.


Journal of the Renin-Angiotensin-Aldosterone System | 2015

The microRNA-132/212 family fine-tunes multiple targets in Angiotensin II signalling in cardiac fibroblasts.

Tilde Eskildsen; Mikael Schneider; Maria B. Sandberg; Vibe Skov; Hasse Brønnum; Mads Thomassen; Torben A. Kruse; Ditte Caroline Andersen; Søren Paludan Sheikh

Introduction: MicroRNAs (miRNAs) are emerging as key regulators of cardiovascular development and disease; however, the cardiac miRNA target molecules are not well understood. We and others have described the Angiotensin II (AngII)-induced miR-132/212 family as novel regulators of cardiovascular function including regulation of cardiac hypertrophy, heart failure and blood pressure possibly through AT1R signalling. However, the miR-132/212 targets in the heart remain unknown. Materials and methods: To understand the role of these miRNAs in cardiac signalling networks, we undertook comprehensive in silico and in vitro experiments to identify miR-132/212 molecular targets in primary rat cardiac fibroblasts. Results: MiR-132/212 overexpression increased fibroblast cell size and mRNA arrays detected several hundred genes that were differentially expressed, including a wide panel of receptors, signalling molecules and transcription factors. Subsequent comprehensive in silico analysis identified 24 target genes, of which 22 genes were qPCR validated. We identified seven genes involved in AngII signalling pathways. Conclusion: We here report novel insight of an extensive network of molecular pathways that fine-tuned by miR-132/212, suggesting a role for this miRNA family as master signalling switches in cardiac fibroblasts. Our data underscore the potential for miRNA tools to manipulate a large array of molecules and thereby control biological function.


Growth Factors Journal | 2013

IL-1β suppresses TGF-β-mediated myofibroblast differentiation in cardiac fibroblasts

Hasse Brønnum; Tilde Eskildsen; Ditte Caroline Andersen; Mikael Schneider; Søren Paludan Sheikh

Abstract Cardiac fibrosis is a maladaptive response of the injured myocardium and is mediated through a complex interplay between molecular triggers and cellular responses. Interleukin (IL)-1β is a key inflammatory inducer in cardiac disease and promotes cell invasion and cardiomyocyte injury, but little is known of its impact on fibrosis. A major cornerstone of fibrosis is the differentiation of cardiac fibroblasts (CFs) into myofibroblasts (myoFbs), which is highly promoted by Transforming Growth Factor (TGF)-β. Therefore, we asked how IL-1β functionally modulated CF-to-myoFb differentiation. Using a differentiation model of ventricular fibroblasts, we found that IL-1β instigated substantial anti-fibrogenic effects. In specific, IL-1β reduced proliferation, matrix activity, cell motility and α-smooth muscle actin expression, which are all hallmarks of myoFb differentiation. These findings suggest that IL-1β, besides from its acknowledged adverse role in the inflammatory response, can also exert beneficial effects in cardiac fibrosis by actively suppressing differentiation of CFs into fibrogenic myoFbs.


Cardiovascular Research | 2017

Human induced pluripotent stem cell-derived vascular smooth muscle cells: differentiation and therapeutic potential

Sohrab Ayoubi; Søren Paludan Sheikh; Tilde Eskildsen

Cardiovascular diseases remain the leading cause of death worldwide and current treatment strategies have limited effect of disease progression. It would be desirable to have better models to study developmental and pathological processes and model vascular diseases in laboratory settings. To this end, human induced pluripotent stem cells (hiPSCs) have generated great enthusiasm, and have been a driving force for development of novel strategies in drug discovery and regenerative cell-therapy for the last decade. Hence, investigating the mechanisms underlying the differentiation of hiPSCs into specialized cell types such as cardiomyocytes, endothelial cells, and vascular smooth muscle cells (VSMCs) may lead to a better understanding of developmental cardiovascular processes and potentiate progress of safe autologous regenerative therapies in pathological conditions. In this review, we summarize the latest trends on differentiation protocols of hiPSC-derived VSMCs and their potential application in vascular research and regenerative therapy.


Annals of Surgery | 2013

The 14q32 microRNA-487b targets the antiapoptotic insulin receptor substrate 1 in hypertension-induced remodeling of the aorta

A.Y. Nossent; Tilde Eskildsen; Lene B Andersen; Peter Bie; Hasse Brønnum; Mikael Schneider; Ditte Caroline Andersen; Sabine M.J. Welten; Pia L Jeppesen; Jaap F. Hamming; Jakob Liebe Hansen; Paul H.A. Quax; Søren Paludan Sheikh

Collaboration


Dive into the Tilde Eskildsen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mikael Schneider

University of Southern Denmark

View shared research outputs
Top Co-Authors

Avatar

A.Y. Nossent

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Hasse Brønnum

University of Southern Denmark

View shared research outputs
Top Co-Authors

Avatar

Maria B. Sandberg

University of Southern Denmark

View shared research outputs
Top Co-Authors

Avatar

Pia L Jeppesen

University of Southern Denmark

View shared research outputs
Top Co-Authors

Avatar

Basem M. Abdallah

University of Southern Denmark

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jan Stenvang

University of Copenhagen

View shared research outputs
Researchain Logo
Decentralizing Knowledge