Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Till Beuerle is active.

Publication


Featured researches published by Till Beuerle.


The Plant Cell | 2002

Characterization of Phenylpropene O-Methyltransferases from Sweet Basil: Facile Change of Substrate Specificity and Convergent Evolution within a Plant O-Methyltransferase Family

David R. Gang; Noa Lavid; Chloe Zubieta; Feng Chen; Till Beuerle; Efraim Lewinsohn; Joseph P. Noel; Eran Pichersky

Some basil varieties are able to convert the phenylpropenes chavicol and eugenol to methylchavicol and methyleugenol, respectively. Chavicol O-methyltransferase (CVOMT) and eugenol O-methyltransferase (EOMT) cDNAs were isolated from the sweet basil variety EMX-1 using a biochemical genomics approach. These cDNAs encode proteins that are 90% identical to each other and very similar to several isoflavone O-methyltransferases such as IOMT, which catalyzes the 4′-O-methylation of 2,7,4′-trihydroxyisoflavanone. On the other hand, CVOMT1 and EOMT1 are related only distantly to (iso)eugenol OMT from Clarkia breweri, indicating that the eugenol O-methylating enzymes in basil and C. breweri evolved independently. Transcripts for CVOMT1 and EOMT1 were highly expressed in the peltate glandular trichomes on the surface of the young basil leaves. The CVOMT1 and EOMT1 cDNAs were expressed in Escherichia coli, and active proteins were produced. CVOMT1 catalyzed the O-methylation of chavicol, and EOMT1 also catalyzed the O-methylation of chavicol with equal efficiency to that of CVOMT1, but it was much more efficient in O-methylating eugenol. Molecular modeling, based on the crystal structure of IOMT, suggested that a single amino acid difference was responsible for the difference in substrate discrimination between CVOMT1 and EOMT1. This prediction was confirmed by site-directed mutagenesis, in which the appropriate mutants of CVOMT1 (F260S) and EOMT1 (S261F) were produced that exhibited the opposite substrate preference relative to the respective native enzyme.


Plant Physiology | 2002

O-Methyltransferases Involved in the Biosynthesis of Volatile Phenolic Derivatives in Rose Petals

Noa Lavid; Jihong Wang; Moshe Shalit; Inna Guterman; Einat Bar; Till Beuerle; Naama Menda; Sharoni Shafir; Dani Zamir; Zach Adam; Alexander Vainstein; David Weiss; Eran Pichersky; Efraim Lewinsohn

Rose (Rosa hybrida) flowers produce and emit a diverse array of volatiles, characteristic to their unique scent. One of the most prominent compounds in the floral volatiles of many rose varieties is the methoxylated phenolic derivative 3,5-dimethoxytoluene (orcinol dimethyl ether). Cell-free extracts derived from developing rose petals displayedO-methyltransferase (OMT) activities toward several phenolic substrates, including 3,5-dihydroxytoluene (orcinol), 3-methoxy,5-hydroxytoluene (orcinol monomethyl ether), 1-methoxy, 2-hydroxy benezene (guaiacol), and eugenol. The activity was most prominent in rose cv Golden Gate, a variety that produces relatively high levels of orcinol dimethyl ether, as compared with rose cv Fragrant Cloud, an otherwise scented variety but which emits almost no orcinol dimethyl ether. Using a functional genomics approach, we have identified and characterized two closely related cDNAs from a rose petal library that each encode a protein capable of methylating the penultimate and immediate precursors (orcinol and orcinol monomethyl ether, respectively) to give the final orcinol dimethyl ether product. The enzymes, designated orcinol OMTs (OOMT1 and OOMT2), are closely related to other plant methyltransferases whose substrates range from isoflavones to phenylpropenes. The peak in the levels ofOOMT1 and OOMT2 transcripts in the flowers coincides with peak OMT activity and with the emission of orcinol dimethyl ether.


Plant Physiology | 2002

Differential production of meta hydroxylated phenylpropanoids in sweet basil peltate glandular trichomes and leaves is controlled by the activities of specific acyltransferases and hydroxylases.

David R. Gang; Till Beuerle; Pascaline Ullmann; Danièle Werck-Reichhart; Eran Pichersky

Sweet basil (Ocimum basilicum) peltate glandular trichomes produce a variety of small molecular weight phenylpropanoids, such as eugenol, caffeic acid, and rosmarinic acid, that result from meta hydroxylation reactions. Some basil lines do not synthesize eugenol but instead synthesize chavicol, a phenylpropanoid that does not contain a metahydroxyl group. Two distinct acyltransferases,p-coumaroyl-coenzyme A:shikimic acidp-coumaroyl transferase andp-coumaroyl-coenzyme A:4-hydroxyphenyllactic acidp-coumaroyl transferase, responsible for the production of p-coumaroyl shikimate and ofp-coumaroyl 4-hydroxyphenyllactate, respectively, were partially purified and shown to be specific for their substrates.p-Coumaroyl-coenzyme A:shikimic acidp-coumaroyl transferase is expressed in basil peltate glands that are actively producing eugenol and is not active in glands of noneugenol-producing basil plants, suggesting that the levels of this activity determine the levels of synthesis of some meta-hydroxylated phenylpropanoids in these glands such as eugenol. Two basil cDNAs encoding isozymes of cytochrome P450 CYP98A13, whichmeta hydroxylates p-coumaroyl shikimate, were isolated and found to be highly similar (90% identity) to the Arabidopsis homolog, CYP98A3. Like the Arabidopsis enzyme, the basil enzymes were found to be very specific for p-coumaroyl shikimate. Finally, additional hydroxylase activities were identified in basil peltate glands that convert p-coumaroyl 4-hydroxyphenyllactic acid to its caffeoyl derivative andp-coumaric acid to caffeic acid.


Molecular Nutrition & Food Research | 2008

Pyrrolizidine alkaloids in honey: Risk analysis by gas chromatography-mass spectrometry

Michael Kempf; Till Beuerle; Manuela Bühringer; Martina Denner; Daniela Trost; Katharina von der Ohe; Vijaya B.R. Bhavanam; Peter Schreier

Recently, contamination of honey with pyrrolizidine alkaloids (PA) has been reported as potential health risk. Therefore, it was of interest to develop a reliable tool for selective and quantitative determination of PA in honey. Sample preparation of the novel method comprises strong cation exchange SPE (SCX-SPE), followed by two reduction steps using zinc and LiAlH(4), as well as subsequent silylation. During this procedure the separated PA are converted into the necin backbone, the common structural feature of PA toxicity, which is analyzed by GC-MS in the SIM mode. The procedure was validated using PA from extracts of Senecio vernalis as well as authentic PA standards including their corresponding N-oxides. The PA content of honey samples was quantified with heliotrine as internal standard. The method was applied to generate a dataset in order to evaluate the potential risk of PA contamination especially for retail honeys available on the German/European market. No selection criteria in terms of floral or geographical origin were applied on the samples before analysis. In total, 216 commercially available floral honey samples were analyzed. Among them 19 samples contained PA, in the range of 0.019-0.120 microg/g, calculated as retronecine equivalents. The reported method facilitates the selective determination of PA without the need to identify each individual PA independently. The PA contamination of honey is expressed in terms of a single sum parameter and no background information such as foraged plants and pollen analysis is necessary. The LOQ is 0.01 ppm with a S/N of 7:1.


Archives of Biochemistry and Biophysics | 2002

Purification and characterization of benzoate:coenzyme A ligase from Clarkia breweri

Till Beuerle; Eran Pichersky

Benzoate:CoA ligase (BZL) was partially purified from flowers of the annual California plant Clarkia breweri. BZL catalyzes the formation of benzoyl-CoA and anthraniloyl-CoA, important intermediates for subsequent acyltransferase reactions in plant secondary metabolism. The native enzyme is active as a monomer with a molecular mass of approximately 59-64.5 kDa, and it has K(m) values of 45, 95, and 130 microM for benzoic acid, ATP, and CoA, respectively. BZL is most active in the pH range of 7.2-8.4, and its activity is strictly dependent on certain bivalent cations. BZL is an AMP-forming enzyme. Overall, its properties suggest that it is related to the family of CoA ligase enzymes that includes the plant enzyme 4-hydroxycinnamate:CoA ligase.


Journal of Chemical Ecology | 2004

Acquired and Partially De Novo Synthesized Pyrrolizidine Alkaloids in Two Polyphagous Arctiids and the Alkaloid Profiles of Their Larval Food-Plants

Thomas Hartmann; Claudine Theuring; Till Beuerle; Ludger Ernst; Michael S. Singer; E. A. Bernays

The profiles of pyrrolizidine alkaloids (PAs) in the two highly polyphagous arctiids Estigmene acrea and Grammia geneura and their potential PA sources in southeastern Arizona were compiled. One of four species of Boraginaceae, Plagiobothrys arizonicus, contained PAs; this is the first PA record for this plant species. The principle PA sources are Senecio longilobus (Asteraceae) and Crotalaria pumila (Fabaceae). The known PA pattern of S. longilobus was extended; the species was found to contain six closely related PAs of the senecionine type. Three novel PAs of the monocrotaline type, named pumilines A–C, were isolated and characterized from C. pumila, a species not studied before. The pumilines are the major PAs in the seeds, while in the vegetative organs they are accompanied by the simple necine derivatives supinidine and as the dominant compound subulacine (1β,2β-epoxytrachelanthamidine). In both plant species, the PAs are stored as N-oxides, except C. pumila seeds, which accumulate the free bases. Great variation in PA composition was observed between local populations of C. pumila. The PA profiles were established for larvae and adults of E. acrea that as larvae had fed on an artificial diet supplemented with crotalaria-powder and of G. geneura fed with S. longilobus. In both experiments, the larvae had a free choice between the respective PA source and diet or food plants free of PAs. The profiles compiled for the two species reflect the alkaloid profiles of their PA sources with one exception, subulacine could never be detected in E. acrea. Besides acquired PAs, insect PAs synthesized from acquired necine bases and necic acids of insect origin were detected in the two arctiid species. These insect PAs that do not occur in the larval food sources accounted for some 40–70% (E. acrea) and 17–37% (G. geneura) of total PAs extracted from the insects. A number of novel insect PAs were identified. Plant-acquired and insect PAs were found to accumulate as N-oxides. The results are discussed in relation to specific biochemical, electrophysiological, and behavioral mechanisms involved in PA sequestration by arctiids.


Molecular Nutrition & Food Research | 2010

Pyrrolizidine alkaloids (PAs) in honey and pollen‐legal regulation of PA levels in food and animal feed required

Michael Kempf; Annika Reinhard; Till Beuerle

Pyrrolizidine alkaloids (PAs) are secondary plant constituents that comprise about 400 different structures and occur in two major forms, a tertiary form and the corresponding N-oxide. PAs containing a 1,2-double bond are pre-toxins and metabolically activated by the action of hepatic P-450 enzymes to toxic pyrroles. Besides the acute toxic effects, the genotoxic and tumorigenicity potential of PAs was demonstrated in some eukaryotic model systems. Recently, the potential PA contamination of food and feeding stuff attracted recurrent great deals of attention. Humans are exposed to these toxins by consumption of herbal medicine, herbal teas, dietary supplements or food containing PA plant material. In numerous studies the potential threat to human health by PAs is stated. In pharmaceuticals, the use of these plants is regulated. Considering the PA concentrations observed especially in authentic honey from PA producing plants and pollen products, the results provoke an international regulation of PAs in food.


Planta | 2007

Biphenyl synthase,a novel type III polyketide synthase

Benye Liu; T. Raeth; Till Beuerle; Ludger Beerhues

Biphenyls and dibenzofurans are the phytoalexins of the Maloideae, a subfamily of the economically important Rosaceae. The carbon skeleton of the two classes of antimicrobial secondary metabolites is formed by biphenyl synthase (BIS). A cDNA encoding this key enzyme was cloned from yeast-extract-treated cell cultures of Sorbus aucuparia. BIS is a novel type III polyketide synthase (PKS) that shares about 60% amino acid sequence identity with other members of the enzyme superfamily. Its preferred starter substrate is benzoyl-CoA that undergoes iterative condensation with three molecules of malonyl-CoA to give 3,5-dihydroxybiphenyl via intramolecular aldol condensation. BIS did not accept CoA-linked cinnamic acids such as 4-coumaroyl-CoA. This substrate, however, was the preferential starter molecule for chalcone synthase (CHS) that was also cloned from S. aucuparia cell cultures. While BIS expression was rapidly, strongly and transiently induced by yeast extract treatment, CHS expression was not. In a phylogenetic tree, BIS grouped together closely with benzophenone synthase (BPS) that also uses benzoyl-CoA as starter molecule but cyclizes the common intermediate via intramolecular Claisen condensation. The molecular characterization of BIS thus contributes to the understanding of the functional diversity and evolution of type III PKSs.


Drug Testing and Analysis | 2014

Identification and quantification of synthetic cannabinoids in 'spice-like' herbal mixtures: a snapshot of the German situation in the autumn of 2012.

Nico Langer; Rainer Lindigkeit; Hans-Martin Schiebel; Ludger Ernst; Till Beuerle

Synthetic compounds mimicking cannabis-like effects are a recent trend. Currently, these so-called synthetic cannabinoids are the largest and fastest growing class of newly appearing designer drugs. Many national authorities are continuously adapting their regulations to keep pace with the permanently changing variety of compounds. We have analyzed eight herbal smoking blends containing synthetic cannabinoids. Altogether, nine compounds could be identified, namely AM-2201, AM-2201-pMe (MAM-2201), AM-1220, AM-1220-azepane, UR-144, XLR-11, JWH-122-pentenyl, AM-2232, and STS-135. Newly appearing compounds were isolated by column chromatography and their structures elucidated by 1D- and 2D-nuclear magnetic resonance (NMR) experiments. In addition, the compounds were investigated by electron ionization-mass spectrometry (EI-MS) and electrospray ionization-tandem mass spectrometry (ESI-MS/MS) to complete the physicochemical dataset. Based on the purified compounds a universal gas chromatography-mass spectrometry (GC-MS) method was developed for the identification and quantification of these compounds in commercial smoking blends. By applying this method, up to five different compounds could be found in such products showing total concentrations from 72 to 303 mg/g smoking blend while individual compounds ranged from 0.4 to 303 mg/g. (1)H NMR spectra of the chiral compounds AM-1220 and its azepane-isomer recorded in the presence of 1 equivalent of (R)-(+)-α-methoxy-α-trifluoromethylphenylacetic acid (MTPA, Moshers acid) showed them to be racemic mixtures.


Molecular Nutrition & Food Research | 2010

Pyrrolizidine alkaloids in pollen and pollen products.

Michael Kempf; Sandra Heil; Iris Haßlauer; Lukas Schmidt; Katharina von der Ohe; Claudine Theuring; Annika Reinhard; Peter Schreier; Till Beuerle

Recently, 1,2-dehydropyrrolizidine alkaloid (PA) ester alkaloids, found predominantly as their N-oxides (PANOs, pyrrolizidine N-oxides), have been reported in both honey and in pollen obtained directly from PA plants and pollen loads collected by bees, raising the possibility of health risks for consumers of these products. We confirm these findings in regard to floral pollen, using pollen collected directly from flowers of the known PA plants Senecio jacobaea, S. vernalis, Echium vulgare and pollinia of Phalaenopsis hybrids, and we extend analyses of 1,2-unsaturated PAs and 1,2-unsaturated PANOs to include bee-pollen products currently being sold in supermarkets and on the Internet as food supplements. PA content of floral pollen ranged from 0.5 to 5 mg/g. The highest values were observed in pollen obtained from Senecio species. Up to 95% of the PAs are found as PANOs. Detailed studies with S. vernalis revealed unique PA patterns in pollen and flowers. While seneciphylline was the most prominent PA in S. vernalis pollen, the flowers were dominated by senecionine. To analyze trace amounts of 1,2-unsaturated PAs in pollen products, our previously elaborated method consisting of strong cation exchange-SPE, two reduction steps followed by silylation and subsequent capillary high-resolution GC-MS using SIM mode was applied. In total, 55 commercially available pollen products were analyzed. Seventeen (31%) samples contained 1,2-unsaturated PAs in the range from 1.08 to 16.35 microg/g, calculated as retronecine equivalents. The 1,2-unsaturated PA content of pollen products is expressed in terms of a single sum parameter and no background information such as foraged plants, pollen analysis, etc. was needed to analyze the samples. The detection limit of overall procedure and the reliable quantitation limit were 0.003 and 0.01 microg/g, respectively.

Collaboration


Dive into the Till Beuerle's collaboration.

Top Co-Authors

Avatar

Ludger Beerhues

Braunschweig University of Technology

View shared research outputs
Top Co-Authors

Avatar

Ludger Ernst

Braunschweig University of Technology

View shared research outputs
Top Co-Authors

Avatar

Claudine Theuring

Braunschweig University of Technology

View shared research outputs
Top Co-Authors

Avatar

Benye Liu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Thomas Hartmann

Braunschweig University of Technology

View shared research outputs
Top Co-Authors

Avatar

Mariam Gaid

Braunschweig University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rainer Lindigkeit

Braunschweig University of Technology

View shared research outputs
Top Co-Authors

Avatar

Hans-Martin Schiebel

Braunschweig University of Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge