Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Till Marquardt is active.

Publication


Featured researches published by Till Marquardt.


Cell | 2001

Pax6 Is Required for the Multipotent State of Retinal Progenitor Cells

Till Marquardt; Ruth Ashery-Padan; Nicole Andrejewski; Raffaella Scardigli; François Guillemot; Peter Gruss

The molecular mechanisms mediating the retinogenic potential of multipotent retinal progenitor cells (RPCs) are poorly defined. Prior to initiating retinogenesis, RPCs express a limited set of transcription factors implicated in the evolutionary ancient genetic network that initiates eye development. We elucidated the function of one of these factors, Pax6, in the RPCs of the intact developing eye by conditional gene targeting. Upon Pax6 inactivation, the potential of RPCs becomes entirely restricted to only one of the cell fates normally available to RPCs, resulting in the exclusive generation of amacrine interneurons. Our findings demonstrate furthermore that Pax6 directly controls the transcriptional activation of retinogenic bHLH factors that bias subsets of RPCs toward the different retinal cell fates, thereby mediating the full retinogenic potential of RPCs.


Trends in Neurosciences | 2002

Generating neuronal diversity in the retina: one for nearly all

Till Marquardt; Peter Gruss

Visual perception of our environment essentially depends on the correct assembly of seven principal cell types into the functional architecture of the neuroretina. During retinogenesis these cell types derive from a common population of multipotent retinal progenitor cells (RPCs) residing in the inner layer of the optic cup. In contrast to other well studied regions of the developing CNS, retinal cell diversification is apparently not achieved by spatial prepatterning into distinct progenitor domains, but rather by the sequential production of cell types in a defined histogenetic order. Several lines of evidence suggest that this observation reflects substantial intrinsic changes in the retinogenic potential of RPCs. Recent advances, however, point at the existence of a common molecular framework underlying the retinogenic potential of RPCs throughout retinal neurogenesis.


Cell | 2005

Coexpressed EphA Receptors and Ephrin-A Ligands Mediate Opposing Actions on Growth Cone Navigation from Distinct Membrane Domains

Till Marquardt; Ryuichi Shirasaki; Sourav Ghosh; Shane E. Andrews; Nigel Carter; Tony Hunter; Samuel L. Pfaff

Contact-dependent signaling between membrane-linked ligands and receptors such as the ephrins and Eph receptor tyrosine kinases controls a wide range of developmental and pathological processes. Paradoxically, many cell types coexpress both ligands and receptors, raising the question of how specific signaling readouts are achieved under these conditions. Here, we studied the signaling activities exerted by coexpressed EphA receptors and GPI-linked ephrin-A ligands in spinal motor neuron growth cones. We demonstrate that coexpressed Eph and ephrin proteins segregate laterally into distinct membrane domains from which they signal opposing effects on the growth cone: EphAs direct growth cone collapse/repulsion and ephrin-As signal motor axon growth/attraction. This subcellular arrangement of Eph-ephrin proteins enables axons to discriminate between cis- versus trans-configurations of ligand/receptor proteins, thereby allowing the utilization of both Ephs and ephrins as functional guidance receptors within the same neuronal growth cone.


Development | 2006

Notch1 functions to suppress cone-photoreceptor fate specification in the developing mouse retina

Orly Yaron; Chen Farhy; Till Marquardt; Meredithe L. Applebury; Ruth Ashery-Padan

Notch receptor-mediated cell-cell signaling is known to negatively regulate neurogenesis in both vertebrate and invertebrate species, while being implicated in promoting the acquisition of glial fates. We studied Notch1 function directly during retinal neurogenesis by selective Cre/loxP-triggered Notch1 gene inactivation in peripheral retinal progenitor cells (RPCs) prior to the onset of cell differentiation. Consistent with its previously established role, Notch1 inactivation led to dramatic alteration in the expression profile of multiple basic helix-loop-helix transcription factors, consequently prompting premature cell-cycle exit and neuronal specification. Surprisingly, however, Notch1 inactivation led to a striking change in retinal cell composition, with cone-photoreceptor precursors expanding at the expense of other early- as well as late-born cell fates. Intriguingly, the Notch1-deficient precursors adhered to the normal chronological sequence of the cone-photoreceptor differentiation program. Together, these findings reveal an unexpected role of Notch signaling in directly controlling neuronal cell-type composition, and suggest a model by which, during normal retinogenesis, Notch1 functions to suppress cone-photoreceptor fate, allowing for the specification of the diversity of retinal cell types.


Development | 2003

Retinal pigmented epithelium determination requires the redundant activities of Pax2 and Pax6

Nicole Bäumer; Till Marquardt; Anastassia Stoykova; Derek Spieler; Dieter Treichel; Ruth Ashery-Padan; Peter Gruss

The transcription factors Pax2 and Pax6 are co-expressed in the entire optic vesicle (OV) prior and concomitant with the establishment of distinct neuroretinal, retinal, pigmented-epithelial and optic-stalk progenitor domains, suggesting redundant functions during retinal determination. Pax2; Pax6 compound mutants display a dose-dependent reduction in the expression of the melanocyte determinant Mitf, accompanied by transdifferentiation of retinal pigmented epithelium (RPE) into neuroretina (NR) in Pax2-/-; Pax6+/- embryos, which strongly resembles the phenotype of Mitf-null mutants. In Pax2-/-; Pax6-/- OVs Mitf fails to be expressed and NR markers occupy the area that usually represents the Mitf+ RPE domain. Furthermore, both, Pax2 and Pax6 bind to and activate a MITF RPE-promoter element in vitro, whereas prolonged expression of Pax6 in the Pax2-positive optic stalk leads to ectopic Mitf expression and RPE differentiation in vivo. Together, these results demonstrate that the redundant activities of Pax2 and Pax6 direct the determination of RPE, potentially by directly controlling the expression of RPE determinants.


PLOS ONE | 2010

TDP-43-Mediated Neuron Loss In Vivo Requires RNA-Binding Activity

Aaron Voigt; David Herholz; Fabienne C. Fiesel; Kavita Kaur; Daniel J. Müller; Peter Karsten; Stephanie Weber; Philipp J. Kahle; Till Marquardt; Jörg B. Schulz

Alteration and/or mutations of the ribonucleoprotein TDP-43 have been firmly linked to human neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). The relative impacts of TDP-43 alteration, mutation, or inherent protein function on neural integrity, however, remain less clear—a situation confounded by conflicting reports based on transient and/or random-insertion transgenic expression. We therefore performed a stringent comparative investigation of impacts of these TDP-43 modifications on neural integrity in vivo. To achieve this, we systematically screened ALS/FTLD-associated and synthetic TDP-43 isoforms via same-site gene insertion and neural expression in Drosophila; followed by transposon-based motor neuron-specific transgenesis in a chick vertebrate system. Using this bi-systemic approach we uncovered a requirement of inherent TDP-43 RNA-binding function—but not ALS/FTLD-linked mutation, mislocalization, or truncation—for TDP-43-mediated neurotoxicity in vivo.


Cell | 2001

Cracking the Transcriptional Code for Cell Specification in the Neural Tube

Till Marquardt; Samuel L. Pfaff

The bHLH repressor Olig2 participates in the transcriptional code governing cell fate specification in the ventral spinal cord. By temporally selective interactions with other transcription factors, Olig2 first directs motor neuron fate and later switches to promoting oligodendrocyte production.


Progress in Retinal and Eye Research | 2003

Transcriptional control of neuronal diversification in the retina

Till Marquardt

During embryonic development, the array of vastly different neuronal types that are incorporated into the functional architecture of the mature neuroretina derives from a common population of multipotent retinal progenitor cells (RPCs). Retinogenesis proceeds in a precise chronological order, with the seven principal cell classes generated in successive phases. Cell biological experiments established that this histogenetic order, at least in part, reflects intrinsic changes within the RPC pool. In recent years a number of molecules controlling various aspects of cell fate specification from RPCs have been identified. However, few attempts have been made to integrate previous concepts that emerged from cell biological studies and more recent results based on molecular genetic experiments. This review aims at providing an overview of recent advances in our understanding of the cellular and molecular mechanisms underlying retinal neuronal diversification, with a particular focus on cell-intrinsic factors.


Science | 2008

Segregation of Axial Motor and Sensory Pathways via Heterotypic Trans-Axonal Signaling

Benjamin W. Gallarda; Dario Bonanomi; Daniel J. Müller; Arthur Brown; William A. Alaynick; Shane E. Andrews; Greg Lemke; Samuel L. Pfaff; Till Marquardt

Execution of motor behaviors relies on circuitries effectively integrating immediate sensory feedback to efferent pathways controlling muscle activity. It remains unclear how, during neuromuscular circuit assembly, sensory and motor projections become incorporated into tightly coordinated, yet functionally separate pathways. We report that, within axial nerves, establishment of discrete afferent and efferent pathways depends on coordinate signaling between coextending sensory and motor projections. These heterotypic axon-axon interactions require motor axonal EphA3/EphA4 receptor tyrosine kinases activated by cognate sensory axonal ephrin-A ligands. Genetic elimination of trans-axonal ephrin-A → EphA signaling in mice triggers drastic motor-sensory miswiring, culminating in functional efferents within proximal afferent pathways. Effective assembly of a key circuit underlying motor behaviors thus critically depends on trans-axonal signaling interactions resolving motor and sensory projections into discrete pathways.


Development | 2008

Dual requirement for Pax6 in retinal progenitor cells

Varda Oron-Karni; Chen Farhy; Michael Elgart; Till Marquardt; Lena Remizova; Orly Yaron; Qing Xie; Ales Cvekl; Ruth Ashery-Padan

Throughout the developing central nervous system, pre-patterning of the ventricular zone into discrete neural progenitor domains is one of the predominant strategies used to produce neuronal diversity in a spatially coordinated manner. In the retina, neurogenesis proceeds in an intricate chronological and spatial sequence, yet it remains unclear whether retinal progenitor cells (RPCs) display intrinsic heterogeneity at any given time point. Here, we performed a detailed study of RPC fate upon temporally and spatially confined inactivation of Pax6. Timed genetic removal of Pax6 appeared to unmask a cryptic divergence of RPCs into qualitatively divergent progenitor pools. In the more peripheral RPCs under normal circumstances, Pax6 seemed to prevent premature activation of a photoreceptor-differentiation pathway by suppressing expression of the transcription factor Crx. More centrally, Pax6 contributed to the execution of the comprehensive potential of RPCs: Pax6 ablation resulted in the exclusive generation of amacrine interneurons. Together, these data suggest an intricate dual role for Pax6 in retinal neurogenesis, while pointing to the cryptic divergence of RPCs into distinct progenitor pools.

Collaboration


Dive into the Till Marquardt's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Samuel L. Pfaff

Salk Institute for Biological Studies

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dario Bonanomi

Salk Institute for Biological Studies

View shared research outputs
Top Co-Authors

Avatar

Shane E. Andrews

Salk Institute for Biological Studies

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge