Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Till S. Voss is active.

Publication


Featured researches published by Till S. Voss.


Cell | 2005

Heterochromatin silencing and locus repositioning linked to regulation of virulence genes in Plasmodium falciparum.

Manoj T. Duraisingh; Till S. Voss; Allison J. Marty; Michael F. Duffy; Robert T. Good; Jennifer K. Thompson; Lucio H. Freitas-Junior; Artur Scherf; Brendan S. Crabb; Alan F. Cowman

The malaria parasite Plasmodium falciparum undergoes antigenic variation to evade host immune responses through switching expression of variant surface proteins encoded by the var gene family. We demonstrate that both a subtelomeric transgene and var genes are subject to reversible gene silencing. Var gene silencing involves the SIR complex as gene disruption of PfSIR2 results in activation of this gene family. We also demonstrate that perinuclear gene activation involves chromatin alterations and repositioning into a location that may be permissive for transcription. Together, this implies that locus repositioning and heterochromatic silencing play important roles in the epigenetic regulation of virulence genes in P. falciparum.


Nature | 2006

A var gene promoter controls allelic exclusion of virulence genes in Plasmodium falciparum malaria

Till S. Voss; Julie Healer; Allison J. Marty; Michael F. Duffy; Jennifer K. Thompson; James G. Beeson; John C. Reeder; Brendan S. Crabb; Alan F. Cowman

Mono-allelic expression of gene families is used by many organisms to mediate phenotypic variation of surface proteins. In the apicomplexan parasite Plasmodium falciparum, responsible for the severe form of malaria in humans, this is exemplified by antigenic variation of the highly polymorphic P. falciparum erythrocyte membrane protein 1 (PfEMP1). PfEMP1, encoded by the 60-member var gene family, represents a major virulence factor due to its central role in immune evasion and intravascular parasite sequestration. Mutually exclusive expression of PfEMP1 is controlled by epigenetic mechanisms involving chromatin modification and perinuclear var locus repositioning. Here we show that a var promoter mediates the nucleation and spreading of stably inherited silenced chromatin. Transcriptional activation of this promoter occurs at the nuclear periphery in association with chromosome-end clusters. Additionally, the var promoter sequence is sufficient to infiltrate a transgene into the allelic exclusion programme of var gene expression, as transcriptional activation of this transgene results in silencing of endogenous var gene transcription. These results show that a var promoter is sufficient for epigenetic silencing and mono-allelic transcription of this virulence gene family, and are fundamental for our understanding of antigenic variation in P. falciparum. Furthermore, the PfEMP1 knockdown parasites obtained in this study will be important tools to increase our understanding of P. falciparum-mediated virulence and immune evasion.


PLOS Biology | 2009

Sir2 paralogues cooperate to regulate virulence genes and antigenic variation in Plasmodium falciparum.

Christopher J. Tonkin; Celine Carret; Manoj T. Duraisingh; Till S. Voss; Stuart A. Ralph; Mirja Hommel; Michael F. Duffy; Liliana Mancio da Silva; Artur Scherf; Alasdair Ivens; Terence P. Speed; James G. Beeson; Alan F. Cowman

Cytoadherance of Plasmodium falciparum-infected erythrocytes in the brain, organs and peripheral microvasculature is linked to morbidity and mortality associated with severe malaria. Parasite-derived P. falciparum Erythrocyte Membrane Protein 1 (PfEMP1) molecules displayed on the erythrocyte surface are responsible for cytoadherance and undergo antigenic variation in the course of an infection. Antigenic variation of PfEMP1 is achieved by in situ switching and mutually exclusive transcription of the var gene family, a process that is controlled by epigenetic mechanisms. Here we report characterisation of the P. falciparum silent information regulators A and B (PfSir2A and PfSir2B) and their involvement in mutual exclusion and silencing of the var gene repertoire. Analysis of P. falciparum parasites lacking either PfSir2A or PfSir2B shows that these NAD(+)-dependent histone deacetylases are required for silencing of different var gene subsets classified by their conserved promoter type. We also demonstrate that in the absence of either of these molecules mutually exclusive expression of var genes breaks down. We show that var gene silencing originates within the promoter and PfSir2 paralogues are involved in cis spreading of silenced chromatin into adjacent regions. Furthermore, parasites lacking PfSir2A but not PfSir2B have considerably longer telomeric repeats, demonstrating a role for this molecule in telomeric end protection. This work highlights the pivotal but distinct role for both PfSir2 paralogues in epigenetic silencing of P. falciparum virulence genes and the control of pathogenicity of malaria infection.


PLOS Pathogens | 2009

Plasmodium falciparum Heterochromatin Protein 1 Marks Genomic Loci Linked to Phenotypic Variation of Exported Virulence Factors

Christian Flueck; Richárd Bártfai; Jennifer Volz; Igor Niederwieser; Adriana M. Salcedo-Amaya; Blaise T. F. Alako; Florian Ehlgen; Stuart A. Ralph; Alan F. Cowman; Zbynek Bozdech; Hendrik G. Stunnenberg; Till S. Voss

Epigenetic processes are the main conductors of phenotypic variation in eukaryotes. The malaria parasite Plasmodium falciparum employs antigenic variation of the major surface antigen PfEMP1, encoded by 60 var genes, to evade acquired immune responses. Antigenic variation of PfEMP1 occurs through in situ switches in mono-allelic var gene transcription, which is PfSIR2-dependent and associated with the presence of repressive H3K9me3 marks at silenced loci. Here, we show that P. falciparum heterochromatin protein 1 (PfHP1) binds specifically to H3K9me3 but not to other repressive histone methyl marks. Based on nuclear fractionation and detailed immuno-localization assays, PfHP1 constitutes a major component of heterochromatin in perinuclear chromosome end clusters. High-resolution genome-wide chromatin immuno-precipitation demonstrates the striking association of PfHP1 with virulence gene arrays in subtelomeric and chromosome-internal islands and a high correlation with previously mapped H3K9me3 marks. These include not only var genes, but also the majority of P. falciparum lineage-specific gene families coding for exported proteins involved in host–parasite interactions. In addition, we identified a number of PfHP1-bound genes that were not enriched in H3K9me3, many of which code for proteins expressed during invasion or at different life cycle stages. Interestingly, PfHP1 is absent from centromeric regions, implying important differences in centromere biology between P. falciparum and its human host. Over-expression of PfHP1 results in an enhancement of variegated expression and highlights the presence of well-defined heterochromatic boundaries. In summary, we identify PfHP1 as a major effector of virulence gene silencing and phenotypic variation. Our results are instrumental for our understanding of this widely used survival strategy in unicellular pathogens.


Molecular Microbiology | 2003

Identification of nuclear proteins that interact differentially with Plasmodium falciparum var gene promoters

Till S. Voss; Mirjam Kaestli; Denise Vogel; Selina Bopp; Hans-Peter Beck

The Plasmodium falciparum virulence factor PfEMP1 is responsible for both antigenic variation and cytoadherence of infected erythrocytes in malaria. Approximately 50 var genes per parasite genome code for this highly polymorphic surface protein. We showed recently that chromosome‐central and subtelomeric var genes are controlled by different promoters. Here, we report that transcriptional repression of var genes located in different chromosomal regions occurs by different mechanisms. Subtelomeric var gene transcription is repressed 4–8 h before that of chromosome‐central var genes. Both repression events coincide with the shifted expression of two distinct nuclear proteins binding specifically to conserved sequence motifs, SPE1 and CPE, present in the respective promoter. Furthermore, a reiterated and highly conserved subtelomeric var promoter element (SPE2) interacts with a nuclear factor exclusively expressed during S‐phase. Promoter analysis by transient transfection suggested direct involvement of these interactions in var gene repression and silencing, and identified regions implicated in transcriptional activation of var genes.


PLOS Pathogens | 2010

A major role for the Plasmodium falciparum ApiAP2 protein PfSIP2 in chromosome end biology.

Christian Flueck; Richárd Bártfai; Igor Niederwieser; Kathrin Witmer; Blaise T. F. Alako; Suzette Moes; Zbynek Bozdech; Paul Jenoe; Hendrik G. Stunnenberg; Till S. Voss

The heterochromatic environment and physical clustering of chromosome ends at the nuclear periphery provide a functional and structural framework for antigenic variation and evolution of subtelomeric virulence gene families in the malaria parasite Plasmodium falciparum. While recent studies assigned important roles for reversible histone modifications, silent information regulator 2 and heterochromatin protein 1 (PfHP1) in epigenetic control of variegated expression, factors involved in the recruitment and organization of subtelomeric heterochromatin remain unknown. Here, we describe the purification and characterization of PfSIP2, a member of the ApiAP2 family of putative transcription factors, as the unknown nuclear factor interacting specifically with cis-acting SPE2 motif arrays in subtelomeric domains. Interestingly, SPE2 is not bound by the full-length protein but rather by a 60kDa N-terminal domain, PfSIP2-N, which is released during schizogony. Our experimental re-definition of the SPE2/PfSIP2-N interaction highlights the strict requirement of both adjacent AP2 domains and a conserved bipartite SPE2 consensus motif for high-affinity binding. Genome-wide in silico mapping identified 777 putative binding sites, 94% of which cluster in heterochromatic domains upstream of subtelomeric var genes and in telomere-associated repeat elements. Immunofluorescence and chromatin immunoprecipitation (ChIP) assays revealed co-localization of PfSIP2-N with PfHP1 at chromosome ends. Genome-wide ChIP demonstrated the exclusive binding of PfSIP2-N to subtelomeric SPE2 landmarks in vivo but not to single chromosome-internal sites. Consistent with this specialized distribution pattern, PfSIP2-N over-expression has no effect on global gene transcription. Hence, contrary to the previously proposed role for this factor in gene activation, our results provide strong evidence for the first time for the involvement of an ApiAP2 factor in heterochromatin formation and genome integrity. These findings are highly relevant for our understanding of chromosome end biology and variegated expression in P. falciparum and other eukaryotes, and for the future analysis of the role of ApiAP2-DNA interactions in parasite biology.


Infection and Immunity | 2007

Inhibition of dendritic cell maturation by malaria is dose dependent and does not require Plasmodium falciparum erythrocyte membrane protein 1.

Salenna R. Elliott; Timothy P. Spurck; Joelle M. Dodin; Alexander G. Maier; Till S. Voss; Francisca Yosaatmadja; Paul D. Payne; Geoffrey I. McFadden; Alan F. Cowman; Stephen J. Rogerson; Louis Schofield; Graham V. Brown

ABSTRACT Red blood cells infected with Plasmodium falciparum (iRBCs) have been shown to modulate maturation of human monocyte-derived dendritic cells (DCs), interfering with their ability to activate T cells. Interaction between Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) and CD36 expressed by DCs is the proposed mechanism, but we show here that DC modulation does not require CD36 binding, PfEMP1, or contact between DCs and infected RBCs and depends on the iRBC dose. iRBCs expressing a PfEMP1 variant that binds chondroitin sulfate A (CSA) but not CD36 were phagocytosed, inhibited lipopolysaccharide (LPS)-induced phenotypic maturation and cytokine secretion, and abrogated the ability of DCs to stimulate allogeneic T-cell proliferation. CD36- and CSA-binding iRBCs showed comparable inhibition. P. falciparum lines rendered deficient in PfEMP1 expression by targeted gene knockout or knockdown also inhibited LPS-induced phenotypic maturation, and separation of DCs and iRBCs in transwells showed that inhibition was not contact dependent. Inhibition was observed at an iRBC:DC ratio of 100:1 but not at a ratio of 10:1. High doses of iRBCs were associated with apoptosis of DCs, which was not activation induced. Lower doses of iRBCs stimulated DC maturation sufficient to activate autologous T-cell proliferation. In conclusion, modulation of DC maturation by P. falciparum is dose dependent and does not require interaction between PfEMP1 and CD36. Inhibition and apoptosis of DCs by high-dose iRBCs may or may not be physiological. However, our observation that low-dose iRBCs initiate functional DC maturation warrants reevaluation and further investigation of DC interactions with blood-stage P. falciparum.


Genome Biology | 2012

Organellar proteomics reveals hundreds of novel nuclear proteins in the malaria parasite Plasmodium falciparum

Sophie C. Oehring; Ben J. Woodcroft; Suzette Moes; Johanna Wetzel; Olivier Dietz; Andreas Pulfer; Chaitali Dekiwadia; Pascal Maeser; Christian Flueck; Kathrin Witmer; Nicolas M. B. Brancucci; Igor Niederwieser; Paul Jenoe; Stuart A. Ralph; Till S. Voss

BackgroundThe post-genomic era of malaria research provided unprecedented insights into the biology of Plasmodium parasites. Due to the large evolutionary distance to model eukaryotes, however, we lack a profound understanding of many processes in Plasmodium biology. One example is the cell nucleus, which controls the parasite genome in a development- and cell cycle-specific manner through mostly unknown mechanisms. To study this important organelle in detail, we conducted an integrative analysis of the P. falciparum nuclear proteome.ResultsWe combined high accuracy mass spectrometry and bioinformatic approaches to present for the first time an experimentally determined core nuclear proteome for P. falciparum. Besides a large number of factors implicated in known nuclear processes, one-third of all detected proteins carry no functional annotation, including many phylum- or genus-specific factors. Importantly, extensive experimental validation using 30 transgenic cell lines confirmed the high specificity of this inventory, and revealed distinct nuclear localization patterns of hitherto uncharacterized proteins. Further, our detailed analysis identified novel protein domains potentially implicated in gene transcription pathways, and sheds important new light on nuclear compartments and processes including regulatory complexes, the nucleolus, nuclear pores, and nuclear import pathways.ConclusionOur study provides comprehensive new insight into the biology of the Plasmodium nucleus and will serve as an important platform for dissecting general and parasite-specific nuclear processes in malaria parasites. Moreover, as the first nuclear proteome characterized in any protist organism, it will provide an important resource for studying evolutionary aspects of nuclear biology.


Molecular Microbiology | 2006

Evidence that Plasmodium falciparum chromosome end clusters are cross-linked by protein and are the sites of both virulence gene silencing and activation.

Allison J. Marty; Jennifer K. Thompson; Michael F. Duffy; Till S. Voss; Alan F. Cowman; Brendan S. Crabb

The malaria parasite Plasmodium falciparum undergoes antigenic variation through allelic exclusion and variant expression of surface proteins encoded by the var gene family. Regulation of var genes is under epigenetic control and involves reversible silencing and activation that requires the physical repositioning of a var locus into a transcriptionally permissive zone of the nuclear periphery. P. falciparum chromosome ends appear to aggregate into large perinuclear clusters which house both subtelomeric and chromosome central var genes. In this study we further define the composition of telomeric clusters using fluorescent in situ hybridization, and provide evidence that chromosome end clusters are formed by cross‐linking protein. In addition, we demonstrate that a subtelomeric reporter gene and a var gene remain within clusters regardless of their transcriptional status. Our findings support a model whereby a highly localized structure dedicated to the activation of a single var gene can be housed within a gene dense chromosome end cluster that is otherwise transcriptionally silent.


Cellular Microbiology | 2012

Plasmodium falciparum centromeres display a unique epigenetic makeup and cluster prior to and during schizogony

Wieteke A. M. Hoeijmakers; Christian Flueck; Kees-Jan Francoijs; Arne H. Smits; Johanna Wetzel; Jennifer Volz; Alan F. Cowman; Till S. Voss; Hendrik G. Stunnenberg; Richárd Bártfai

Centromeres are essential for the faithful transmission of chromosomes to the next generation, therefore being essential in all eukaryotic organisms. The centromeres of Plasmodium falciparum, the causative agent of the most severe form of malaria, have been broadly mapped on most chromosomes, but their epigenetic composition remained undefined. Here, we reveal that the centromeric histone variant PfCENH3 occupies a 4–4.5 kb region on each P. falciparum chromosome, which is devoid of pericentric heterochromatin but harbours another histone variant, PfH2A.Z. These CENH3 covered regions pinpoint the exact position of the centromere on all chromosomes and revealed that all centromeric regions have similar size and sequence composition. Immunofluorescence assay of PfCENH3 strongly suggests that P. falciparum centromerescluster to a single nuclear location prior to and during mitosis and cytokinesis but dissociate soon after invasion. In summary, we reveal a dynamic association of Plasmodium centromeres, which bear a unique epigenetic signature and conform to a strict structure. These findings suggest that DNA‐associated and epigenetic elements play an important role in centromere establishment in this important human pathogen.

Collaboration


Dive into the Till S. Voss's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alan F. Cowman

Walter and Eliza Hall Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zbynek Bozdech

Nanyang Technological University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Richárd Bártfai

Radboud University Nijmegen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge