Tillmann Rendel
University of Marburg
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Tillmann Rendel.
conference on object-oriented programming systems, languages, and applications | 2011
Christian Kästner; Paolo G. Giarrusso; Tillmann Rendel; Sebastian Erdweg; Klaus Ostermann; Thorsten Berger
In many projects, lexical preprocessors are used to manage different variants of the project (using conditional compilation) and to define compile-time code transformations (using macros). Unfortunately, while being a simple way to implement variability, conditional compilation and lexical macros hinder automatic analysis, even though such analysis is urgently needed to combat variability-induced complexity. To analyze code with its variability, we need to parse it without preprocessing it. However, current parsing solutions use unsound heuristics, support only a subset of the language, or suffer from exponential explosion. As part of the TypeChef project, we contribute a novel variability-aware parser that can parse almost all unpreprocessed code without heuristics in practicable time. Beyond the obvious task of detecting syntax errors, our parser paves the road for further analysis, such as variability-aware type checking. We implement variability-aware parsers for Java and GNU C and demonstrate practicability by parsing the product line MobileMedia and the entire X86 architecture of the Linux kernel with 6065 variable features.
conference on object-oriented programming systems, languages, and applications | 2011
Sebastian Erdweg; Tillmann Rendel; Christian Kästner; Klaus Ostermann
Existing approaches to extend a programming language with syntactic sugar often leave a bitter taste, because they cannot be used with the same ease as the main extension mechanism of the programming language - libraries. Sugar libraries are a novel approach for syntactically extending a programming language within the language. A sugar library is like an ordinary library, but can, in addition, export syntactic sugar for using the library. Sugar libraries maintain the composability and scoping properties of ordinary libraries and are hence particularly well-suited for embedding a multitude of domain-specific languages into a host language. They also inherit self-applicability from libraries, which means that sugar libraries can provide syntactic extensions for the definition of other sugar libraries. To demonstrate the expressiveness and applicability of sugar libraries, we have developed SugarJ, a language on top of Java, SDF and Stratego, which supports syntactic extensibility. SugarJ employs a novel incremental parsing technique, which allows changing the syntax within a source file. We demonstrate SugarJ by five language extensions, including embeddings of XML and closures in Java, all available as sugar libraries. We illustrate the utility of self-applicability by embedding XML Schema, a metalanguage to define XML languages.
generative programming and component engineering | 2008
Christian Hofer; Klaus Ostermann; Tillmann Rendel; Adriaan Moors
The influential pure embedding methodology of embedding domain-specific languages (DSLs) as libraries into a general-purpose host language forces the DSL designer to commit to a single semantics. This precludes the subsequent addition of compilation, optimization or domain-specific analyses. We propose polymorphic embedding of DSLs, where many different interpretations of a DSL can be provided as reusable components, and show how polymorphic embedding can be realized in the programming language Scala. With polymorphic embedding, the static type-safety, modularity, composability and rapid prototyping of pure embedding are reconciled with the flexibility attainable by external toolchains.
language descriptions tools and applications | 2012
Sebastian Erdweg; Paolo G. Giarrusso; Tillmann Rendel
In language-oriented programming and modeling, software developers are largely concerned with the definition of domain-specific languages (DSLs) and their composition. While various implementation techniques and frameworks exist for defining DSLs, language composition has not obtained enough attention and is not well-enough understood. In particular, there is a lack of precise terminology for describing observations about language composition in theory and in existing language-development systems. To clarify the issue, we specify five forms of language composition: language extension, language restriction, language unification, self-extension, and extension composition. We illustrate this classification by various examples and apply it to discuss the performance of different language-development systems with respect to language composition. We hope that the terminology provided by our classification will enable more precise communication on language composition.
feature oriented software development | 2012
Christian Kästner; Alexander von Rhein; Sebastian Erdweg; Jonas Pusch; Sven Apel; Tillmann Rendel; Klaus Ostermann
We investigate how to execute a unit test for all products of a product line without generating each product in isolation in a brute-force fashion. Learning from variability-aware analyses, we (a) design and implement a variability-aware interpreter and, alternatively, (b) reencode variability of the product line to simulate the test cases with a model checker. The interpreter internally reasons about variability, executing paths not affected by variability only once for the whole product line. The model checker achieves similar results by reusing powerful off-the-shelf analyses. We experimented with a prototype implementation for each strategy. We compare both strategies and discuss trade-offs and future directions. In the long run, we aim at finding an efficient testing approach that can be applied to entire product lines with millions of products.
symposium/workshop on haskell | 2010
Tillmann Rendel; Klaus Ostermann
Parsers and pretty-printers for a language are often quite similar, yet both are typically implemented separately, leading to redundancy and potential inconsistency. We propose a new interface of syntactic descriptions, with which both parser and pretty-printer can be described as a single program. Whether a syntactic description is used as a parser or as a pretty-printer is determined by the implementation of the interface. Syntactic descriptions enable programmers to describe the connection between concrete and abstract syntax once and for all, and use these descriptions for parsing or pretty-printing as needed. We also discuss the generalization of our programming technique towards an algebra of partial isomorphisms.
generative programming and component engineering | 2011
Sebastian Erdweg; Lennart C. L. Kats; Tillmann Rendel; Christian Kästner; Klaus Ostermann; Eelco Visser
Large software projects consist of code written in a multitude of different (possibly domain-specific) languages, which are often deeply interspersed even in single files. While many proposals exist on how to integrate languages semantically and syntactically, the question of how to support this scenario in integrated development environments (IDEs) remains open: How can standard IDE services, such as syntax highlighting, outlining, or reference resolving, be provided in an extensible and compositional way, such that an open mix of languages is supported in a single file? Based on our library-based syntactic extension language for Java, SugarJ, we propose to make IDEs extensible by organizing editor services in editor libraries. Editor libraries are libraries written in the object language, SugarJ, and hence activated and composed through regular import statements on a file-by-file basis. We have implemented an IDE for editor libraries on top of SugarJ and the Eclipse-based Spoofax language workbench. We have validated editor libraries by evolving this IDE into a fully-fledged and schema-aware XML editor as well as an extensible Latex editor, which we used for writing this paper.
programming language design and implementation | 2014
Yufei Cai; Paolo G. Giarrusso; Tillmann Rendel; Klaus Ostermann
If the result of an expensive computation is invalidated by a small change to the input, the old result should be updated incrementally instead of reexecuting the whole computation. We incrementalize programs through their derivative. A derivative maps changes in the programs input directly to changes in the programs output, without reexecuting the original program. We present a program transformation taking programs to their derivatives, which is fully static and automatic, supports first-class functions, and produces derivatives amenable to standard optimization. We prove the program transformation correct in Agda for a family of simply-typed λ-calculi, parameterized by base types and primitives. A precise interface specifies what is required to incrementalize the chosen primitives. We investigate performance by a case study: We implement in Scala the program transformation, a plugin and improve performance of a nontrivial program by orders of magnitude.
symposium/workshop on haskell | 2013
Sebastian Erdweg; Felix Rieger; Tillmann Rendel; Klaus Ostermann
Programmers need convenient syntax to write elegant and concise programs. Consequently, the Haskell standard provides syntactic sugar for some scenarios (e.g., do notation for monadic code), authors of Haskell compilers provide syntactic sugar for more scenarios (e.g., arrow notation in GHC), and some Haskell programmers implement preprocessors for their individual needs (e.g., idiom brackets in SHE). But manually written preprocessors cannot scale: They are expensive, error-prone, and not composable. Most researchers and programmers therefore refrain from using the syntactic notations they need in actual Haskell programs, but only use them in documentation or papers. We present a syntactically extensible version of Haskell, SugarHaskell, that empowers ordinary programmers to implement and use custom syntactic sugar. Building on our previous work on syntactic extensibility for Java, SugarHaskell integrates syntactic extensions as sugar libraries into Haskells module system. Syntax extensions in SugarHaskell can declare arbitrary context-free and layout-sensitive syntax. SugarHaskell modules are compiled into Haskell modules and further processed by a Haskell compiler. We provide an Eclipse-based IDE for SugarHaskell that is extensible, too, and automatically provides syntax coloring for all syntax extensions imported into a module. We have validated SugarHaskell with several case studies, including arrow notation (as implemented in GHC) and EBNF as a concise syntax for the declaration of algebraic data types with associated concrete syntax. EBNF declarations also show how to extend the extension mechanism itself: They introduce syntactic sugar for using the declared concrete syntax in other SugarHaskell modules.
software language engineering | 2012
Sebastian Erdweg; Tillmann Rendel; Christian Kästner; Klaus Ostermann
The theory of context-free languages is well-understood and context-free parsers can be used as off-the-shelf tools in practice. In particular, to use a context-free parser framework, a user does not need to understand its internals but can specify a language declaratively as a grammar. However, many languages in practice are not context-free. One particularly important class of such languages is layout-sensitive languages, in which the structure of code depends on indentation and whitespace. For example, Python, Haskell, F#, and Markdown use indentation instead of curly braces to determine the block structure of code. Their parsers (and lexers) are not declaratively specified but hand-tuned to account for layout-sensitivity.