Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tilman Floehr is active.

Publication


Featured researches published by Tilman Floehr.


Environmental Science and Pollution Research | 2013

Solution by dilution?—A review on the pollution status of the Yangtze River

Tilman Floehr; Hongxia Xiao; Björn Scholz-Starke; Lingling Wu; Junli Hou; Daqiang Yin; Xiaowei Zhang; Rong Ji; Xingzhong Yuan; Richard Ottermanns; Martina Roß-Nickoll; Andreas Schäffer; Henner Hollert

The Yangtze River has been a source of life and prosperity for the Chinese people for centuries and is a habitat for a remarkable variety of aquatic species. But the river suffers from huge amounts of urban sewage, agricultural effluents, and industrial wastewater as well as ship navigation wastes along its course. With respect to the vast amounts of water and sediments discharged by the Yangtze River, it is reasonable to ask whether the pollution problem may be solved by simple dilution. This article reviews the past two decades of published research on organic pollutants in the Yangtze River and several adjacent water bodies connected to the main stream, according to a holistic approach. Organic pollutant levels and potential effects of water and sediments on wildlife and humans, measured in vitro, in vivo, and in situ, were critically reviewed. The contamination with organic pollutants, including polycyclic aromatic hydrocarbons, polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs), polychlorinated dibenzo-p-dioxins/polychlorinated dibenzofurans, polybrominated diphenyl ethers (PBDEs), perfluorinated compounds (PFCs), and others, of water and sediment along the river was described. Especially Wuhan section and the Yangtze Estuary exhibited stronger pollution than other sections. Bioassays, displaying predominantly the endpoints mutagenicity and endocrine disruption, applied at sediments, drinking water, and surface water indicated a potential health risk in several areas. Aquatic organisms exhibited detectable concentrations of toxic compounds like PCBs, OCPs, PBDEs, and PFCs. Genotoxic effects could also be assessed in situ in fish. To summarize, it can be stated that dilution reduces the ecotoxicological risk in the Yangtze River, but does not eliminate it. Keeping in mind an approximately 14 times greater water discharge compared to the major European river Rhine, the absolute pollution mass transfer of the Yangtze River is of severe concern for the environmental quality of its estuary and the East China Sea. Based on the review, further research needs have been identified.


Water Research | 2013

In vitro characterization of the effectiveness of enhanced sewage treatment processes to eliminate endocrine activity of hospital effluents

Sibylle Maletz; Tilman Floehr; Silvio Beier; Claudia Klümper; Abraham Brouwer; Peter Behnisch; Eric Higley; John P. Giesy; Markus Hecker; Wilhelm Gebhardt; Volker Linnemann; Johannes Pinnekamp; Henner Hollert

Occurrence of pharmaceuticals in aquatic ecosystems is related to sewage effluents. Due to the possible adverse effects on wildlife and humans, degradation and removal of pharmaceuticals and their metabolites during wastewater treatment is an increasingly important task. The present study was part of a proof of concept study at a medium sized country hospital in western Germany that investigated efficiency of advanced treatment processes to remove toxic potencies from sewage. Specifically, the efficiency of treatment processes such as a membrane bioreactor (MBR) and ozonation to remove endocrine disruptive potentials was assessed. Estrogenic effects were characterized by use of two receptor-mediated in vitro transactivation assays, the Lyticase Yeast Estrogen Screen (LYES) and the Estrogen Receptor mediated Chemical Activated LUciferase gene eXpression (ER CALUX(®)). In addition, the H295R Steroidogenesis Assay (H295R) was utilized to detect potential disruption of steroidogenesis. Raw sewage contained measurable estrogen receptor (ER)-mediated potency as determined by use of the LYES (28.9 ± 8.6 ng/L, 0.33× concentration), which was reduced after treatment by MBR (2.3 ± 0.3 ng/L) and ozone (1.2 ± 0.4 ng/L). Results were confirmed by use of ER CALUX(®) which measured concentrations of estrogen equivalents (EEQs) of 0.2 ± 0.11 ng/L (MBR) and 0.01 ± 0.02 ng/L (ozonation). In contrast, treatment with ozone resulted in greater production of estradiol and aromatase activity at 3× and greater concentrations in H295R cells. It is hypothesized that this is partly due to formation of active oxidized products during ozonation. Substance-specific analyses demonstrated efficient removal of most of the measured compounds by ozonation. A comparison of the ER-mediated responses measured by use of the LYES and ER CALUX(®) with those from the chemical analysis using a mass-balance approach revealed estrone (E1) to be the main compound that caused the estrogenic effects. Overall, treatment of sewage by use of MBR successfully reduced estrogenicity of hospital effluents as well as substances that are able to alter sex steroid production. However, after ozonation, effluents should undergo further investigations regarding the formation of endocrine active metabolites. The results obtained as part of this study demonstrated applicability of in vitro assays for monitoring of endocrine-modulating potency of treated sewage.


Environmental Science and Pollution Research | 2012

The Yangtze-Hydro Project: a Chinese–German environmental program

A. Bergmann; Yonghong Bi; Lei Chen; Tilman Floehr; B. Henkelmann; Andreas Holbach; Henner Hollert; Wei Hu; Irene Kranzioch; E. Klumpp; S. Küppers; Stefan Norra; Richard Ottermanns; G. Pfister; Martina Roß-Nickoll; Andreas Schäffer; Nina Schleicher; Burkhard Schmidt; Björn Scholz-Starke; Karl-Werner Schramm; G. Subklew; Andreas Tiehm; C. Temoka; Jun-Tao Wang; Bernhard Westrich; R.-D. Wilken; A. Wolf; X. Xiang; Y. Yuan

Water of good quality is one of the basic needs of human life. Worldwide, great efforts are being undertaken for an assured water supply. In this respect, one of the largest water technology projects worldwide is the Yangtze Three Gorges Dam in China. There is a need for extensive scientific and technical understanding of the challenges arising from this large hydrological engineering project. German and Chinese groups from various scientific fields are collaborating to provide knowledge for the sustainable management of the reservoir. In this project description, the Yangtze Three Gorges Dam Project, its goals and challenges, are described in brief, and the contributions of the German research projects are presented.


Journal of Environmental Sciences-china | 2015

Yangtze Three Gorges Reservoir, China: A holistic assessment of organic pollution, mutagenic effects of sediments and genotoxic impacts on fish

Tilman Floehr; Björn Scholz-Starke; Hongxia Xiao; Josef Koch; Lingling Wu; Junli Hou; Anja Wolf; Axel Bergmann; Kerstin Bluhm; Xingzhong Yuan; Martina Roß-Nickoll; Andreas Schäffer; Henner Hollert

Besides obvious benefits, the Three Gorges Dams construction resulted in new pollution scenarios with the potentials to threaten the Three Gorges Reservoir (TGR) ecosystem. In order to record organic contamination, to find links to ecotoxicological impacts and to serve as reference for ensuing monitoring, several sites in the TGR area were screened applying the triad approach with additional lines-of-evidence as a holistic assessment method. Sediments and the benthic fish species Pelteobagrus vachellii were sampled in 2011 and 2012 to determine organic pollution levels, mutagenic potentials and genotoxic impacts. Two regional hot-spots near the cities of Chongqing and Kaixian were identified and further investigated in 2013. Only polycyclic aromatic hydrocarbons (PAHs) could be detected in sediments in 2011 (165-1653ng/g), emphasizing their roles as key pollutants of the area. Their ubiquity was confirmed at Chongqing (150-433ng/g) and Kaixian (127-590ng/g) in 2013. Concentrations were comparable to other major Chinese and German rivers. However, the immense sediment influx suggested a deposition of 216-636kgPAH/day (0.2-0.6mgPAH/(m(2)·day)), indicating an ecotoxicological risk. PAH source analysis highlighted primary impacts of combustion sources on the more industrialized upper TGR section, whereas petrogenic sources dominated the mid-low section. Furthermore, sediment extracts from several sites exhibited significant activities of frameshift promutagens in the Ames fluctuation assay. Additionally, significant genotoxic impairments in erythrocytes of P. vachellii were detected (Chongqing/Kaixian), demonstrating the relevance of genotoxicity as an important mode of action in the TGRs fish. PAHs, their derivatives and non-target compounds are considered as main causative agents.


Drug Metabolism and Disposition | 2013

Tissue-specific metabolism of benzo[a]pyrene in rainbow trout (Oncorhynchus mykiss): a comparison between the liver and immune organs.

Anja-Maria Möller; Corinna Hermsen; Tilman Floehr; M.H. Lamoree; Helmut Segner

Polycyclic aromatic hydrocarbons (PAHs) are immunotoxicants in fish. In mammals, phase I metabolites are believed to be critically involved in the immunotoxicity of PAHs. This mechanism has been suggested for fish as well. The present study investigates the capacity of immune organs (head kidney, spleen) of rainbow trout, Oncorhynchus mykiss, to metabolize the prototypic PAH, benzo[a]pyrene (BaP). To this end, we analyzed 1) the induction of enzymatic capacity measured as 7-ethoxyresorufin-O-deethylase (EROD) activity in immune organs compared with liver, 2) the organ profiles of BaP metabolites generated in vivo, and 3) rates of microsomal BaP metabolite production in vitro. All measurements were done for control fish and for fish treated with an intraperitoneal injection of 15 mg BaP/kg body weight. In exposed trout, the liver, head kidney, and spleen contained similar levels of BaP, whereas EROD induction differed significantly between the organs, with liver showing the highest induction factor (132.8×), followed by head kidney (38.4×) and spleen (1.4×). Likewise, rates of microsomal metabolite formation experienced the highest induction in the liver of BaP-exposed trout, followed by the head kidney and spleen. Microsomes from control fish displayed tissue-specific differences in metabolite production. In contrast, in BaP-exposed trout, microsomes of all organs produced the potentially immunotoxic BaP-7,8-dihydrodiol as the main metabolite. The findings from this study show that PAHs, like BaP, are distributed into immune organs of fish and provide the first evidence that immune organs possess inducible PAH metabolism leading to in situ production of potentially immunotoxic PAH metabolites.


PLOS ONE | 2014

Evaluation of the ecotoxicity of sediments from Yangtze river estuary and contribution of priority PAHs to ah receptor--mediated activities.

Li Liu; Ling Chen; Ying Shao; Lili Zhang; Tilman Floehr; Hongxia Xiao; Yan Yan; Kathrin Eichbaum; Henner Hollert; Lingling Wu

In this study, in vitro bioassays were performed to assess the ecotoxicological potential of sediments from Yangtze River estuary. The cytotoxicity and aryl hydrocarbon receptor (AhR)-mediated toxicity of sediment extracts with rainbow trout (Oncorhynchus mykiss) liver cells were determined by neutral red retention and 7-ethoxyresorufin-O-deethylase assays. The cytotoxicity and AhR-mediated activity of sediments from the Yangtze River estuary ranged from low level to moderate level compared with the ecotoxicity of sediments from other river systems. However, Yangtze River releases approximately 14 times greater water discharge compared with Rhine, a major river in Europe. Thus, the absolute pollution mass transfer of Yangtze River may be detrimental to the environmental quality of estuary and East China Sea. Effect-directed analysis was applied to identify substances causing high dioxin-like activities. To identify unknown substances contributing to dioxin-like potencies of whole extracts, we fractionated crude extracts by open column chromatography. Non-polar paraffinic components (F1), weakly and moderately polar components (F2), and highly polar substances (F3) were separated from each crude extract of sediments. F2 showed the highest dioxin-like activities. Based on the results of mass balance calculation of chemical toxic equivalent concentrations (TEQs), our conclusion is that priority polycyclic aromatic hydrocarbons indicated a low portion of bio-TEQs ranging from 1% to 10% of crude extracts. Further studies should be conducted to identify unknown pollutants.


Environmental Science and Pollution Research | 2013

An integrated approach to model the biomagnification of organic pollutants in aquatic food webs of the Yangtze Three Gorges Reservoir ecosystem using adapted pollution scenarios

Björn Scholz-Starke; Richard Ottermanns; Ursula Rings; Tilman Floehr; Henner Hollert; Junli Hou; Bo Li; Ling Ling Wu; Xingzhong Yuan; Katrin Strauch; Hu Wei; Stefan Norra; Andreas Holbach; Bernhard Westrich; Andreas Schäffer; Martina Roß-Nickoll

The impounding of the Three Gorges Reservoir (TGR) at the Yangtze River caused large flooding of urban, industrial, and agricultural areas, and profound land use changes took place. Consequently, substantial amounts of organic and inorganic pollutants were released into the reservoir. Additionally, contaminants and nutrients are entering the reservoir by drift, drainage, and runoff from adjacent agricultural areas as well as from sewage of industry, aquacultures, and households. The main aim of the presented research project is a deeper understanding of the processes that determines the bioaccumulation and biomagnification of organic pollutants, i.e., mainly pesticides, in aquatic food webs under the newly developing conditions of the TGR. The project is part of the Yangtze-Hydro environmental program, financed by the German Ministry of Education and Science. In order to test combinations of environmental factors like nutrients and pollution, we use an integrated modeling approach to study the potential accumulation and biomagnification. We describe the integrative modeling approach and the consecutive adaption of the AQUATOX model, used as modeling framework for ecological risk assessment. As a starting point, pre-calibrated simulations were adapted to Yangtze-specific conditions (regionalization). Two exemplary food webs were developed by a thorough review of the pertinent literature. The first typical for the flowing conditions of the original Yangtze River and the Daning River near the city of Wushan, and the second for the stagnant reservoir characteristics of the aforementioned region that is marked by an intermediate between lake and large river communities of aquatic organisms. In close cooperation with German and Chinese partners of the Yangtze-Hydro Research Association, other site-specific parameters were estimated. The MINIBAT project contributed to the calibration of physicochemical and bathymetric parameters, and the TRANSMIC project delivered hydrodynamic models for water volume and flow velocity conditions. The research questions were firstly focused on the definition of scenarios that could depict representative situations regarding food webs, pollution, and flow conditions in the TGR. The food webs and the abiotic site conditions in the main study area near the city of Wushan that determine the environmental preconditions for the organisms were defined. In our conceptual approach, we used the pesticide propanil as a model substance.


PLOS ONE | 2015

Assessment of the Mutagenicity of Sediments from Yangtze River Estuary Using Salmonella Typhimurium/Microsome Assay

Li Liu; Ling Chen; Tilman Floehr; Hongxia Xiao; Kerstin Bluhm; Henner Hollert; Lingling Wu

Sediments in estuaries are of important environmental concern because they may act as pollution sinks and sources to the overlying water body. These sediments can be accumulated by benthic organisms. This study assessed the mutagenic potential of sediment extracts from the Yangtze River estuary by using the Ames fluctuation assay with the Salmonella typhimurium his (−) strain TA98 (frameshift mutagen indicator) and TA100 (baseshift mutagen indicator). Most of the sediment samples were mutagenic to the strain TA98, regardless of the presence or absence of exogenous metabolic activation (S9 induction by β-naphthoflavone/phenobarbital). However, none of the samples were mutagenic to the strain TA100. Thus, the mutagenicity pattern was mainly frameshift mutation, and the responsible toxicants were both direct (without S9 mix) and indirect (with S9 mix) mutagens. The mutagenicity of the sediment extracts increased when S9 was added. Chemical analysis showed a poor correlation between the content of priority polycyclic aromatic hydrocarbons and the detected mutagenicity in each sample. The concept of effect-directed analysis was used to analyze possible compounds responsible for the detected mutagenic effects. With regard to the mutagenicity of sediment fractions, non-polar compounds as well as weakly and moderately polar compounds played a main role. Further investigations should be conducted to identify the responsible components.


Environmental Science & Technology | 2016

Effect-Directed Analysis of Aryl Hydrocarbon Receptor Agonists in Sediments from the Three Gorges Reservoir, China

Hongxia Xiao; Martin Krauss; Tilman Floehr; Yan Yan; Arnold Bahlmann; Kathrin Eichbaum; Markus Brinkmann; Xiaowei Zhang; Xingzhong Yuan; Werner Brack; Henner Hollert

The construction of the Three Gorges Dam (TGD) in the Yangtze River raises great concern in ecotoxicological research since large amounts of pollutants enter the Three Gorges Reservoir (TGR) water bodies after TGD impoundment. In this work, effect-directed analysis (EDA), combining effect assessment, fractionation procedure, and target and nontarget analyses, was used to characterize aryl hydrocarbon receptor (AhR) agonists in sediments of the TGR. Priority polycyclic aromatic hydrocarbons (PAHs) containing four to five aromatic rings were found to contribute significantly to the overall observed effects in the area of Chongqing. The relatively high potency fractions in the Kaixian area were characterized by PAHs and methylated derivatives thereof and heterocyclic polycyclic aromatic compounds (PACs) such as dinaphthofurans. Benzothiazole and derivatives were identified as possible AhR agonists in the Kaixian area based on nontarget liquid chromatography-high resolution mass spectrometry (LC-HRMS). To our knowledge, this study is the first one applying the EDA approach and identifying potential AhR agonists in TGR.


Environmental Science and Pollution Research | 2013

Dilution of pollution? Processes affecting the water quality in the river-style Three Gorges Reservoir.

Andreas Holbach; Tilman Floehr; Irene Kranzioch; Anja Wolf

The Three Gorges Reservoir (TGR) in the Yangtze River is a unique water body. There is no comparative river-style reservoir in the world with similar characteristics and magnitudes of shape, size, water level fluctuation, and discharge. This highly dynamic system is located in a rapidly developing area of China covering parts of the Hubei Province and Chongqing Municipality. Increasing efforts for waste water treatment and pollution management can hardly compete with growing urban areas, industry, and infrastructure. Thus, huge amounts of various pollutants enter the TGR water bodies through point and non-point sources. Serious eutrophication problems manifest themselves in increasing numbers of algal blooms, especially in tributary backwaters of TGR. Besides nutrient loads, absolute concentrations of anthropogenic pollutants like heavy metals and organic chemical compounds rarely reach critical levels according to the Chinese, German, and WHO water quality guidelines. The massive dilution of these compounds in the mean discharging water of around 30,000 m 3 /s causes low absolute concentrations. But overall, tremendous total loads are transported further downstream and may remain a threat to connected ecosystems. At Tongji University in Shanghai, China, the 3rd conference entitled “Workshop on Processes in the Yangtze River System” was held for scientific exchangeon the recent cutting edgeenvironmentalresearchintheYangtzeRiverwithafocus

Collaboration


Dive into the Tilman Floehr's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andreas Holbach

Karlsruhe Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge