Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tilman Heise is active.

Publication


Featured researches published by Tilman Heise.


PLOS ONE | 2011

Implication of RNA-Binding Protein La in Proliferation, Migration and Invasion of Lymph Node-Metastasized Hypopharyngeal SCC Cells

Gunhild Sommer; Carlos Rossa; Angela C. Chi; Brad W. Neville; Tilman Heise

The 5-year survival rate for oral cavity cancer is poorer than for breast, colon or prostate cancer, and has improved only slightly in the last three decades. Hence, new therapeutic strategies are urgently needed. Here we demonstrate by tissue micro array analysis for the first time that RNA-binding protein La is significantly overexpressed in oral squamous cell carcinoma (SCC). Within this study we therefore addressed the question whether siRNA-mediated depletion of the La protein may interfere with known tumor-promoting characteristics of head and neck SCC cells. Our studies demonstrate that the La protein promotes cell proliferation, migration and invasion of lymph node-metastasized hypopharyngeal SCC cells. We also reveal that La is required for the expression of β-catenin as well as matrix metalloproteinase type 2 (MMP-2) within these cells. Taken together these data suggest a so far unknown function of the RNA-binding protein La in promoting tumor progression of head and neck SCC.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Sumoylation in axons triggers retrograde transport of the RNA-binding protein La

Erna A. van Niekerk; Dianna E. Willis; Jay H. Chang; Kerstin Reumann; Tilman Heise; Jeffery L. Twiss

A surprisingly large population of mRNAs has been shown to localize to sensory axons, but few RNA-binding proteins have been detected in these axons. These axonal mRNAs include several potential binding targets for the La RNA chaperone protein. La is transported into axonal processes in both culture and peripheral nerve. Interestingly, La is posttranslationally modified in sensory neurons by sumoylation. In axons, small ubiquitin-like modifying polypeptides (SUMO)-La interacts with dynein, whereas native La interacts with kinesin. Lysine 41 is required for sumoylation, and sumoylation-incompetent LaK41R shows only anterograde transport, whereas WT La shows both anterograde and retrograde transport in axons. Thus, sumoylation of La determines the directionality of its transport within the axonal compartment, with SUMO-La likely recycling to the cell body.


Journal of Biological Chemistry | 2004

Nuclear Trafficking of La Protein Depends on a Newly Identified Nucleolar Localization Signal and the Ability to Bind RNA

Sven Horke; Kerstin Reumann; Michaela Schweizer; Hans Will; Tilman Heise

Here we provide evidence for an interaction-dependent subnuclear trafficking of the human La (hLa) protein, known as transient interaction partner of a variety of RNAs. Among these, precursor transcripts of certain RNAs are located in the nucleoplasm or nucleolus. Here we examined which functional domains of hLa are involved in its nuclear trafficking. By using green fluorescent-hLa fusion proteins, we discovered a nucleolar localization signal and demonstrated its functionality in a heterologous context. In addition, we revealed that the RRM2 motif of hLa is essential both for its RNA binding competence in vitro and in vivo and its exit from the nucleolus. Our data imply that hLa traffics between different subnuclear compartments, which depend decisively on a functional nucleolar localization signal as well as on RNA binding. Directed trafficking of hLa is fully consistent with its function in the maturation of precursor RNAs located in different subnuclear compartments.


Journal of Virology | 2001

Characterization of Nuclear RNases That Cleave Hepatitis B Virus RNA near the La Protein Binding Site

Tilman Heise; Luca G. Guidotti; Francis V. Chisari

ABSTRACT Hepatitis B virus (HBV) RNA is downregulated by inflammatory cytokines induced in the liver by adoptively transferred HBV-specific cytotoxic T lymphocytes (CTLs) and during murine cytomegalovirus (MCMV) infections of the livers of HBV transgenic mice. The disappearance of HBV RNA is tightly associated with the cytokine-induced proteolytic cleavage of a previously defined HBV RNA-binding protein known as La autoantigen. La binds to a predicted stem-loop structure at the 5′ end of the posttranscriptional regulatory element of HBV RNA between nucleotides 1243 and 1333. In the present study, we searched for nuclear RNase activities that might be involved in HBV RNA decay. Nuclear extracts derived from control livers and CTL-injected and MCMV-infected livers were analyzed for the ability to cleave HBV RNA. Endonucleolytic activity that cleaved HBV RNA at positions 1269 to 1270 and 1271 to 1272, immediately 5′ of the stem-loop bound by the La protein (positions 1272 to 1293), was detected. Furthermore, we provide evidence that the cytokine-dependent downregulation of HBV RNA following MCMV infection is temporally associated with the upregulation of the endonucleolytic activity herein described. Collectively, these results suggest a model in which the steady-state HBV RNA content is controlled by the stabilizing influence of La and the destabilizing influence of nuclear RNase activities.


Journal of Biological Chemistry | 2002

Molecular Characterization of the Human La Protein·Hepatitis B Virus RNA.B Interaction in Vitro

Sven Horke; Kerstin Reumann; Andreas Rang; Tilman Heise

The La protein was recently identified as a host factor potentially involved in the cytokine-induced post-transcriptional down-regulation of hepatitis B virus (HBV) RNA. The La binding site was mapped to a predicted stem-loop structure within a region shared by all HBV RNAs, and it was concluded that the La protein might be an HBV RNA-stabilizing factor. To characterize the RNA binding mediated by the different RNA recognition motifs (RRMs) of the human La protein, several La deletion mutants were produced and analyzed for HBV RNA binding ability. The data demonstrate that the first RRM is not required for binding, whereas the RNP-1 and RNP-2 consensus sequences of the RRM-2 and RRM-3 are separately required for binding, indicating a cooperative function of these two RRMs. Furthermore, the results suggest that multimeric La disassembles into monomeric La upon binding of HBV RNA.B. By gel retardation assay the affinity of the wild type human La·HBV RNA.B interaction was determined in the nanomolar range, comparable to the affinity determined for the mouse La·HBV RNA.B interaction. This study identified small regions within the human La protein mediating the binding of HBV RNA. Hence, these binding sites might represent targets for novel antiviral strategies based on the disruption of the human La·HBV RNA interaction, thereby leading to HBV RNA degradation.


Biochemical and Biophysical Research Communications | 2008

La autoantigen suppresses IRES-dependent translation of the hepatitis A virus

Susann Cordes; Yuri Kusov; Tilman Heise; Verena Gauss-Müller

The human RNA-binding protein La, is an essential trans-acting factor in IRES-dependent translation initiation of poliovirus, the prototypic picornavirus. For hepatitis A virus (HAV), an unusual member of this virus family, the role of host proteins in its inefficient translation and slow replication is unclear. Using small interfering RNA in vivo and purified La in vitro, we demonstrate for the first time that La suppresses HAV IRES-mediated translation and replication. We show that La binds specifically to distinct parts of the HAV IRES and that-unlike poliovirus-HAV proteinase 3C does not cleave La. The La-mediated suppression of HAV translation and stimulation of poliovirus translation implies unexpected mechanistic differences between viral IRES elements.


Nucleic Acids Research | 2006

The hepatitis B virus PRE contains a splicing regulatory element

Tilman Heise; Gunhild Sommer; Kerstin Reumann; Imke Meyer; Hans Will; Heiner Schaal

The posttranscriptional regulatory element (PRE) is considered to enhance hepatitis B virus (HBV) gene expression by facilitating the nuclear export of intronless viral subgenomic RNAs. Its role in the RNA metabolism of the viral pregenomic RNA (pgRNA) is currently unknown. We identified a positively cis-acting splicing regulatory element (SRE-1) and present two lines of evidence for its functionality. Firstly, in a heterologous context SRE-1 functionally substitutes for a retroviral bidirectional exonic splicing enhancer (ESE). As expected, SRE-1 is a splicing enhancer also in its natural viral sequence context, since deletion of SRE-1 reduces splicing of pgRNA in cell culture experiments. Secondly, we show that stimulation of HBV RNA splicing by the splicing factor PSF was repressed by the PRE. Analysis of a variety of PSF mutants indicated that RNA-binding and protein–protein interaction were required to enhance splicing. In addition, we show that the PRE contributed to pgRNA stability, but has little influence on its nuclear export. Herein, we report for the first time that the PRE harbors splicing stimulating and inhibiting regulatory elements controlling processing of the viral pregenome. We discuss a model in which the regulation of pgRNA splicing depends on cellular factors interacting with the PRE.


Journal of Biological Chemistry | 2004

Functional characterization of the interaction between human La and hepatitis B virus RNA.

Imke Ehlers; Sven Horke; Kerstin Reumann; Andreas Rang; Frank Grosse; Hans Will; Tilman Heise

The La protein is a multifunctional RNA-binding protein and has also been suggested to be involved in the stabilization of hepatitis B virus (HBV) RNA. Here we demonstrate that antibodies against the human La protein specifically precipitate HBV RNA from HBV ribonucleoprotein-containing mammalian cell extracts, providing evidence for the association between human La and HBV RNA. Moreover, we report that the turnover of HBV RNA depends on structural features and less on the primary sequence of the La-binding site on the viral RNA. In addition we show that the interaction between human La and HBV RNA in vitro is modulated by accessory factor(s) in a phosphorylation-dependent manner. Taken together these data indicate that both structural features, the composition of La/HBV ribonucleoprotein particles as well as interacting cellular factors, are critical determinants in the regulation of the stability of the HBV RNA.


Nucleic Acids Research | 2015

Novel RNA chaperone domain of RNA-binding protein La is regulated by AKT phosphorylation

Julia Kuehnert; Gunhild Sommer; Avery W. Zierk; Alena Fedarovich; Alexander Brock; Dzmitry Fedarovich; Tilman Heise

The cellular function of the cancer-associated RNA-binding protein La has been linked to translation of viral and cellular mRNAs. Recently, we have shown that the human La protein stimulates IRES-mediated translation of the cooperative oncogene CCND1 in cervical cancer cells. However, there is little known about the underlying molecular mechanism by which La stimulates CCND1 IRES-mediated translation, and we propose that its RNA chaperone activity is required. Herein, we show that La binds close to the CCND1 start codon and demonstrate that Las RNA chaperone activity can change the folding of its binding site. We map the RNA chaperone domain (RCD) within the C-terminal region of La in close proximity to a novel AKT phosphorylation site (T389). Phosphorylation at T389 by AKT-1 strongly impairs its RNA chaperone activity. Furthermore, we demonstrate that the RCD as well as T389 is required to stimulate CCND1 IRES-mediated translation in cells. In summary, we provide a model whereby a novel interplay between RNA-binding, RNA chaperoning and AKT phosphorylation of La protein regulates CCND1 IRES-mediated translation.


Journal of Biological Chemistry | 2006

Murine leukemia virus regulates alternative splicing through sequences upstream of the 5' splice site

Janine Kraunus; Daniela Zychlinski; Tilman Heise; Melanie Galla; Jens Bohne; Christopher Baum

Alternative splicing of the primary transcript plays a key role in retroviral gene expression. In contrast to all known mechanisms that mediate alternative splicing in retroviruses, we found that in murine leukemia virus, distinct elements located upstream of the 5′ splice site either inhibited or activated splicing of the genomic RNA. Detailed analysis of the first untranslated exon showed that the primer binding site (PBS) activates splicing, whereas flanking sequences either downstream or upstream of the PBS are inhibitory. This new function of the PBS was independent of its orientation and primer binding but associated with a particular destabilizing role in a proposed secondary structure. On the contrary, all sequences surrounding the PBS that are involved in stem formation of the first exon were found to suppress splicing. Targeted mutations that destabilized the central stem and compensatory mutations of the counter strand clearly validated the concept that murine leukemia virus attenuates its 5′ splice site by forming an inhibitory stem-loop in its first exon. Importantly, this mode of splice regulation was conserved in a complete proviral clone. Some of the mutants that increase splicing revealed an opposite effect on translation, implying that the first exon also regulates this process. Together, these findings suggest that sequences upstream of the 5′ splice site play an important role in splice regulation of simple retroviruses, directly or indirectly attenuating the efficiency of splicing.

Collaboration


Dive into the Tilman Heise's collaboration.

Top Co-Authors

Avatar

Gunhild Sommer

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Venkatesh Kota

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Hans Will

Heinrich Pette Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alena Fedarovich

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Jeffery L. Twiss

University of South Carolina

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alexander Brock

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Avery W. Zierk

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge