Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tilman Jobst-Schwan is active.

Publication


Featured researches published by Tilman Jobst-Schwan.


Journal of Clinical Investigation | 2017

Mutations in sphingosine-1-phosphate lyase cause nephrosis with ichthyosis and adrenal insufficiency

Svjetlana Lovric; Sara Goncalves; Heon Yung Gee; Babak Oskouian; Honnappa Srinivas; Won Il Choi; Shirlee Shril; Shazia Ashraf; Weizhen Tan; Jia Rao; Merlin Airik; David Schapiro; Daniela A. Braun; Carolin E. Sadowski; Eugen Widmeier; Tilman Jobst-Schwan; Johanna Magdalena Schmidt; Vladimir Girik; Guido Capitani; Jung H. Suh; Noelle Lachaussée; Christelle Arrondel; Julie Patat; Olivier Gribouval; Monica Furlano; Olivia Boyer; Alain Schmitt; Vincent Vuiblet; Seema Hashmi; Rainer Wilcken

Steroid-resistant nephrotic syndrome (SRNS) causes 15% of chronic kidney disease cases. A mutation in 1 of over 40 monogenic genes can be detected in approximately 30% of individuals with SRNS whose symptoms manifest before 25 years of age. However, in many patients, the genetic etiology remains unknown. Here, we have performed whole exome sequencing to identify recessive causes of SRNS. In 7 families with SRNS and facultative ichthyosis, adrenal insufficiency, immunodeficiency, and neurological defects, we identified 9 different recessive mutations in SGPL1, which encodes sphingosine-1-phosphate (S1P) lyase. All mutations resulted in reduced or absent SGPL1 protein and/or enzyme activity. Overexpression of cDNA representing SGPL1 mutations resulted in subcellular mislocalization of SGPL1. Furthermore, expression of WT human SGPL1 rescued growth of SGPL1-deficient dpl1&Dgr; yeast strains, whereas expression of disease-associated variants did not. Immunofluorescence revealed SGPL1 expression in mouse podocytes and mesangial cells. Knockdown of Sgpl1 in rat mesangial cells inhibited cell migration, which was partially rescued by VPC23109, an S1P receptor antagonist. In Drosophila, Sply mutants, which lack SGPL1, displayed a phenotype reminiscent of nephrotic syndrome in nephrocytes. WT Sply, but not the disease-associated variants, rescued this phenotype. Together, these results indicate that SGPL1 mutations cause a syndromic form of SRNS.


Kidney International | 2018

Whole exome sequencing frequently detects a monogenic cause in early onset nephrolithiasis and nephrocalcinosis

Ankana Daga; Amar J. Majmundar; Daniela A. Braun; Heon Yung Gee; Jennifer A. Lawson; Shirlee Shril; Tilman Jobst-Schwan; Asaf Vivante; David Schapiro; Weizhen Tan; Jillian K. Warejko; Eugen Widmeier; Caleb P. Nelson; Hanan M. Fathy; Zoran Gucev; Neveen A. Soliman; Seema Hashmi; Jan Halbritter; Margarita Halty; Jameela A. Kari; Sherif El-Desoky; Michael A. J. Ferguson; Michael J. Somers; Avram Z. Traum; Deborah Stein; Ghaleb Daouk; Nancy Rodig; Avi Katz; Christian Hanna; Andrew L. Schwaderer

The incidence of nephrolithiasis continues to rise. Previously, we showed that a monogenic cause could be detected in 11.4% of individuals with adult-onset nephrolithiasis or nephrocalcinosis and in 16.7-20.8% of individuals with onset before 18 years of age, using gene panel sequencing of 30 genes known to cause nephrolithiasis/nephrocalcinosis. To overcome the limitations of panel sequencing, we utilized whole exome sequencing in 51 families, who presented before age 25 years with at least one renal stone or with a renal ultrasound finding of nephrocalcinosis to identify the underlying molecular genetic cause of disease. In 15 of 51 families, we detected a monogenic causative mutation by whole exome sequencing. A mutation in seven recessive genes (AGXT, ATP6V1B1, CLDN16, CLDN19, GRHPR, SLC3A1, SLC12A1), in one dominant gene (SLC9A3R1), and in one gene (SLC34A1) with both recessive and dominant inheritance was detected. Seven of the 19 different mutations were not previously described as disease-causing. In one family, a causative mutation in one of 117 genes that may represent phenocopies of nephrolithiasis-causing genes was detected. In nine of 15 families, the genetic diagnosis may have specific implications for stone management and prevention. Several factors that correlated with the higher detection rate in our cohort were younger age at onset of nephrolithiasis/nephrocalcinosis, presence of multiple affected members in a family, and presence of consanguinity. Thus, we established whole exome sequencing as an efficient approach toward a molecular genetic diagnosis in individuals with nephrolithiasis/nephrocalcinosis who manifest before age 25 years.


Clinical Journal of The American Society of Nephrology | 2018

Whole Exome Sequencing of Patients with Steroid-Resistant Nephrotic Syndrome

Jillian K. Warejko; Weizhen Tan; Ankana Daga; David Schapiro; Jennifer A. Lawson; Shirlee Shril; Svjetlana Lovric; Shazia Ashraf; Jia Rao; Tobias Hermle; Tilman Jobst-Schwan; Eugen Widmeier; Amar J. Majmundar; Ronen Schneider; Heon Yung Gee; J. Magdalena Schmidt; Asaf Vivante; Amelie T. van der Ven; Hadas Ityel; Jing Chen; Carolin E. Sadowski; Stefan Kohl; Werner L. Pabst; Makiko Nakayama; Michael J. Somers; Nancy Rodig; Ghaleb Daouk; Michelle A. Baum; Deborah Stein; Michael A. J. Ferguson

BACKGROUND AND OBJECTIVESnSteroid-resistant nephrotic syndrome overwhelmingly progresses to ESRD. More than 30 monogenic genes have been identified to cause steroid-resistant nephrotic syndrome. We previously detected causative mutations using targeted panel sequencing in 30% of patients with steroid-resistant nephrotic syndrome. Panel sequencing has a number of limitations when compared with whole exome sequencing. We employed whole exome sequencing to detect monogenic causes of steroid-resistant nephrotic syndrome in an international cohort of 300 families.nnnDESIGN, SETTING, PARTICIPANTS, & MEASUREMENTSnThree hundred thirty-five individuals with steroid-resistant nephrotic syndrome from 300 families were recruited from April of 1998 to June of 2016. Age of onset was restricted to <25 years of age. Exome data were evaluated for 33 known monogenic steroid-resistant nephrotic syndrome genes.nnnRESULTSnIn 74 of 300 families (25%), we identified a causative mutation in one of 20 genes known to cause steroid-resistant nephrotic syndrome. In 11 families (3.7%), we detected a mutation in a gene that causes a phenocopy of steroid-resistant nephrotic syndrome. This is consistent with our previously published identification of mutations using a panel approach. We detected a causative mutation in a known steroid-resistant nephrotic syndrome gene in 38% of consanguineous families and in 13% of nonconsanguineous families, and 48% of children with congenital nephrotic syndrome. A total of 68 different mutations were detected in 20 of 33 steroid-resistant nephrotic syndrome genes. Fifteen of these mutations were novel. NPHS1, PLCE1, NPHS2, and SMARCAL1 were the most common genes in which we detected a mutation. In another 28% of families, we detected mutations in one or more candidate genes for steroid-resistant nephrotic syndrome.nnnCONCLUSIONSnWhole exome sequencing is a sensitive approach toward diagnosis of monogenic causes of steroid-resistant nephrotic syndrome. A molecular genetic diagnosis of steroid-resistant nephrotic syndrome may have important consequences for the management of treatment and kidney transplantation in steroid-resistant nephrotic syndrome.


American Journal of Physiology-renal Physiology | 2013

Renal uptake of the antiapoptotic protein survivin is mediated by megalin at the apical membrane of the proximal tubule

Tilman Jobst-Schwan; Rikke Nielsen; Thomas Hackenbeck; Maike Buettner-Herold; Philipp Lechler; Sven Kroening; Margarethe Goppelt-Struebe; Ursula Schloetzer-Schrehardt; Barbara G. Fürnrohr; Reinhard E. Voll; Kerstin Amann; Kai-Uwe Eckardt; Erik Ilsø Christensen; Michael S. Wiesener

The inhibitor of apoptosis protein survivin is a bifunctional molecule that regulates cellular division and survival. We have previously shown that survivin protein can be found at high concentrations in the adult kidney, particularly in the proximal tubules. Here, survivin is localized primarily at the apical membrane, a pattern that may indicate absorption of the protein. Several proteins in primary urine are internalized by megalin, an endocytosis receptor, which is in principle found in the same localization as survivin. Immunolabeling for survivin in different species confirmed survivin signal localizing to the apical membrane of the proximal tubule. Immunoelectron microscopy also showed apical localization of survivin in human kidneys. Furthermore, in polarized human primary tubular cells endogenous as well as external recombinant survivin is stored in the apical region of the cells. Costaining of survivin and megalin by immunohistochemistry and immunoelectron microscopy confirmed colocalization. Finally, by surface plasmon resonance we were able to demonstrate that survivin binds megalin and cubilin and that megalin knockout mice lose survivin through the urine. Survivin accumulates at the apical membrane of the renal tubule by reuptake, which is achieved by the endocytic receptor megalin, collaborating with cubilin. For this to occur, survivin will have to circulate in the blood and be filtered into the primary urine. It is not known at this stage what the functional role of tubular survivin is. However, a small number of experimental and clinical reports implicate that renal survivin is important for functional integrity of the kidney.


Kidney & Blood Pressure Research | 2015

Discordant Clinical Course of Vitamin-D-Hydroxylase (CYP24A1) Associated Hypercalcemia in Two Adult Brothers With Nephrocalcinosis

Tilman Jobst-Schwan; Andrea Pannes; Karl P. Schlingmann; Kai-Uwe Eckardt; Bodo B. Beck; Michael S. Wiesener

Background/Aims: Hypercalcemia can result in nephrocalcinosis/nephrolithiasis and may lead to renal failure. Idiopathic infantile hypercalcemia is caused by mutations of the CYP24A1 gene, which regulates vitamin D activity. Classically infants present with hypercalcemia. Recently, a number of individuals have been reported with late onset clinical manifestation or late diagnosis in adulthood. All these patients are believed to show hypercalciuria. Methods: We report a 24 year old patient of healthy consanguine parents. Genetic analysis was performed by Sanger sequencing of the CYP24A1 gene in the index patient and targeted exon 2 analysis of all other family members. Results: The patient was hospitalized with severe malaise during an acute EBV-infection. He showed hypercalcemia > 3mmol/l and acute, hypovolemic renal failure with profound nephrocalcinosis, but no hypercalciuria. Genetic workup revealed a homozygous loss-of-function mutation p.E143del in the CYP24A1 gene. His clinically asymptomatic brother showed nephrocalcinosis of lesser degree. Repeatedly, low parathyroid hormone levels were detected in both brothers. Conclusion: This family displays the highly variable phenotype of CYP24A1 biallelic mutation carriers. CYP24A1 associated disease is an important differential diagnosis for the workup and counseling of infants as well as adults with hypercalcemia since a proper genetic diagnosis may result in therapeutic consequences.


Nature Communications | 2018

Mutations in six nephrosis genes delineate a pathogenic pathway amenable to treatment

Shazia Ashraf; Hiroki Kudo; Jia Rao; Atsuo Kikuchi; Eugen Widmeier; Jennifer A. Lawson; Weizhen Tan; Tobias Hermle; Jillian K. Warejko; Shirlee Shril; Merlin Airik; Tilman Jobst-Schwan; Svjetlana Lovric; Daniela A. Braun; Heon Yung Gee; David Schapiro; Amar J. Majmundar; Carolin E. Sadowski; Werner L. Pabst; Ankana Daga; Amelie T. van der Ven; Johanna Magdalena Schmidt; Boon Chuan Low; Anjali Gupta; Brajendra K. Tripathi; Jenny S. Wong; Kirk N. Campbell; Kay Metcalfe; Denny Schanze; Tetsuya Niihori

No efficient treatment exists for nephrotic syndrome (NS), a frequent cause of chronic kidney disease. Here we show mutations in six different genes (MAGI2, TNS2, DLC1, CDK20, ITSN1, ITSN2) as causing NS in 17 families with partially treatment-sensitive NS (pTSNS). These proteins interact and we delineate their roles in Rho-like small GTPase (RLSG) activity, and demonstrate deficiency for mutants of pTSNS patients. We find that CDK20 regulates DLC1. Knockdown of MAGI2, DLC1, or CDK20 in cultured podocytes reduces migration rate. Treatment with dexamethasone abolishes RhoA activation by knockdown of DLC1 or CDK20 indicating that steroid treatment in patients with pTSNS and mutations in these genes is mediated by this RLSG module. Furthermore, we discover ITSN1 and ITSN2 as podocytic guanine nucleotide exchange factors for Cdc42. We generate Itsn2-L knockout mice that recapitulate the mild NS phenotype. We, thus, define a functional network of RhoA regulation, thereby revealing potential therapeutic targets.Nephrotic syndrome is the second most common chronic kidney disease but there are no targeted treatment strategies available. Here the authors identify mutations of six genes codifying for proteins involved in cytoskeleton remodelling and modulation of small GTPases in 17 families with nephrotic syndrome.


PLOS ONE | 2018

Acute multi-sgRNA knockdown of KEOPS complex genes reproduces the microcephaly phenotype of the stable knockout zebrafish model.

Tilman Jobst-Schwan; Johanna Magdalena Schmidt; Ronen Schneider; Charlotte A. Hoogstraten; Jeremy F.P. Ullmann; David Schapiro; Amar J. Majmundar; Amy Kolb; Kaitlyn Eddy; Shirlee Shril; Daniela A. Braun; Annapurna Poduri; Friedhelm Hildebrandt

Until recently, morpholino oligonucleotides have been widely employed in zebrafish as an acute and efficient loss-of-function assay. However, off-target effects and reproducibility issues when compared to stable knockout lines have compromised their further use. Here we employed an acute CRISPR/Cas approach using multiple single guide RNAs targeting simultaneously different positions in two exemplar genes (osgep or tprkb) to increase the likelihood of generating mutations on both alleles in the injected F0 generation and to achieve a similar effect as morpholinos but with the reproducibility of stable lines. This multi single guide RNA approach resulted in median likelihoods for at least one mutation on each allele of >99% and sgRNA specific insertion/deletion profiles as revealed by deep-sequencing. Immunoblot showed a significant reduction for Osgep and Tprkb proteins. For both genes, the acute multi-sgRNA knockout recapitulated the microcephaly phenotype and reduction in survival that we observed previously in stable knockout lines, though milder in the acute multi-sgRNA knockout. Finally, we quantify the degree of mutagenesis by deep sequencing, and provide a mathematical model to quantitate the chance for a biallelic loss-of-function mutation. Our findings can be generalized to acute and stable CRISPR/Cas targeting for any zebrafish gene of interest.


Journal of Clinical Investigation | 2018

Mutations in multiple components of the nuclear pore complex cause nephrotic syndrome

Daniela A. Braun; Svjetlana Lovric; David Schapiro; Ronen Schneider; Jonathan Marquez; Maria Asif; Muhammad Sajid Hussain; Ankana Daga; Eugen Widmeier; Jia Rao; Shazia Ashraf; Weizhen Tan; C. Patrick Lusk; Amy Kolb; Tilman Jobst-Schwan; Johanna Magdalena Schmidt; Charlotte A. Hoogstraten; Kaitlyn Eddy; Thomas M. Kitzler; Shirlee Shril; Abubakar Moawia; Kathrin Schrage; Arwa Ishaq A. Khayyat; Jennifer A. Lawson; Heon Yung Gee; Jillian K. Warejko; Tobias Hermle; Amar J. Majmundar; Hannah Hugo; Birgit Budde

Steroid-resistant nephrotic syndrome (SRNS) almost invariably progresses to end-stage renal disease. Although more than 50 monogenic causes of SRNS have been described, a large proportion of SRNS remains unexplained. Recently, it was discovered that mutations of NUP93 and NUP205, encoding 2 proteins of the inner ring subunit of the nuclear pore complex (NPC), cause SRNS. Here, we describe mutations in genes encoding 4 components of the outer rings of the NPC, namely NUP107, NUP85, NUP133, and NUP160, in 13 families with SRNS. Using coimmunoprecipitation experiments, we showed that certain pathogenic alleles weakened the interaction between neighboring NPC subunits. We demonstrated that morpholino knockdown of nup107, nup85, or nup133 in Xenopus disrupted glomerulogenesis. Re-expression of WT mRNA, but not of mRNA reflecting mutations from SRNS patients, mitigated this phenotype. We furthermore found that CRISPR/Cas9 knockout of NUP107, NUP85, or NUP133 in podocytes activated Cdc42, an important effector of SRNS pathogenesis. CRISPR/Cas9 knockout of nup107 or nup85 in zebrafish caused developmental anomalies and early lethality. In contrast, an in-frame mutation of nup107 did not affect survival, thus mimicking the allelic effects seen in humans. In conclusion, we discovered here that mutations in 4 genes encoding components of the outer ring subunits of the NPC cause SRNS and thereby provide further evidence that specific hypomorphic mutations in these essential genes cause a distinct, organ-specific phenotype.


Journal of Clinical Investigation | 2017

Advillin acts upstream of phospholipase C ϵ1 in steroid-resistant nephrotic syndrome

Jia Rao; Shazia Ashraf; Weizhen Tan; Amelie T. van der Ven; Heon Yung Gee; Daniela A. Braun; Krisztina Fehér; Sudeep P. George; Amin Esmaeilniakooshkghazi; Won Il Choi; Tilman Jobst-Schwan; Ronen Schneider; Johanna Magdalena Schmidt; Eugen Widmeier; Jillian K. Warejko; Tobias Hermle; David Schapiro; Svjetlana Lovric; Shirlee Shril; Ankana Daga; Ahmet Nayir; Mohan Shenoy; Y Tse; Martin Bald; Udo Helmchen; Sevgi Mir; Afig Berdeli; Jameela A. Kari; Sherif El Desoky; Neveen A. Soliman

Steroid-resistant nephrotic syndrome (SRNS) is a frequent cause of chronic kidney disease. Here, we identified recessive mutations in the gene encoding the actin-binding protein advillin (AVIL) in 3 unrelated families with SRNS. While all AVIL mutations resulted in a marked loss of its actin-bundling ability, truncation of AVIL also disrupted colocalization with F-actin, thereby leading to impaired actin binding and severing. Additionally, AVIL colocalized and interacted with the phospholipase enzyme PLCE1 and with the ARP2/3 actin-modulating complex. Knockdown of AVIL in human podocytes reduced actin stress fibers at the cell periphery, prevented recruitment of PLCE1 to the ARP3-rich lamellipodia, blocked EGF-induced generation of diacylglycerol (DAG) by PLCE1, and attenuated the podocyte migration rate (PMR). These effects were reversed by overexpression of WT AVIL but not by overexpression of any of the 3 patient-derived AVIL mutants. The PMR was increased by overexpression of WT Avil or PLCE1, or by EGF stimulation; however, this increased PMR was ameliorated by inhibition of the ARP2/3 complex, indicating that ARP-dependent lamellipodia formation occurs downstream of AVIL and PLCE1 function. Together, these results delineate a comprehensive pathogenic axis of SRNS that integrates loss of AVIL function with alterations in the action of PLCE1, an established SRNS protein.


Nephrology Dialysis Transplantation | 2018

Genetic variants in the LAMA5 gene in pediatric nephrotic syndrome

Daniela A. Braun; Jillian K. Warejko; Shazia Ashraf; Weizhen Tan; Ankana Daga; Ronen Schneider; Tobias Hermle; Tilman Jobst-Schwan; Eugen Widmeier; Amar J. Majmundar; Makiko Nakayama; David Schapiro; Jia Rao; Johanna Magdalena Schmidt; Charlotte A. Hoogstraten; Hannah Hugo; Sevcan A. Bakkaloglu; Jameela A. Kari; Sherif El Desoky; Ghaleb Daouk; Shrikant Mane; Richard P. Lifton; Shirlee Shril; Friedhelm Hildebrandt

BACKGROUNDnNephrotic syndrome (NS), a chronic kidney disease, is characterized by significant loss of protein in the urine causing hypoalbuminemia and edema. In general, ∼15% of childhood-onset cases do not respond to steroid therapy and are classified as steroid-resistant NS (SRNS). In ∼30% of cases with SRNS, a causative mutation can be detected in one of 44 monogenic SRNS genes. The gene LAMA5 encodes laminin-α5, an essential component of the glomerular basement membrane. Mice with a hypomorphic mutation in the orthologous gene Lama5 develop proteinuria and hematuria.nnnMETHODSnTo identify additional monogenic causes of NS, we performed whole exome sequencing in 300 families with pediatric NS. In consanguineous families we applied homozygosity mapping to identify genomic candidate loci for the underlying recessive mutation.nnnRESULTSnIn three families, in whom mutations in known NS genes were excluded, but in whom a recessive, monogenic cause of NS was strongly suspected based on pedigree information, we identified homozygous variants of unknown significance (VUS) in the gene LAMA5. While all affected individuals had nonsyndromic NS with an early onset of disease, their clinical outcome and response to immunosuppressive therapy differed notably.nnnCONCLUSIONnWe here identify recessive VUS in the gene LAMA5 in patients with partially treatment-responsive NS. More data will be needed to determine the impact of these VUS in disease management. However, familial occurrence of disease, data from genetic mapping and a mouse model that recapitulates the NS phenotypes suggest that these genetic variants may be inherited factors that contribute to the development of NS in pediatric patients.

Collaboration


Dive into the Tilman Jobst-Schwan's collaboration.

Top Co-Authors

Avatar

David Schapiro

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Daniela A. Braun

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Eugen Widmeier

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Shirlee Shril

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Amar J. Majmundar

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Ankana Daga

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shazia Ashraf

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Weizhen Tan

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Jia Rao

Boston Children's Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge