Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tilmann Denk is active.

Publication


Featured researches published by Tilmann Denk.


Science | 2006

Cassini Observes the Active South Pole of Enceladus

Carolyn C. Porco; Paul Helfenstein; Peter C. Thomas; A. P. Ingersoll; Jack Wisdom; Robert West; G. Neukum; Tilmann Denk; Roland Wagner; Thomas Roatsch; Susan Werner Kieffer; Elizabeth P. Turtle; Alfred S. McEwen; Torrence V. Johnson; Julie Ann Rathbun; J. Veverka; Daren Wilson; Jason Perry; Joe Spitale; Andre Brahic; Joseph A. Burns; Anthony D. DelGenio; Luke Dones; Carl D. Murray; Steven W. Squyres

Cassini has identified a geologically active province at the south pole of Saturns moon Enceladus. In images acquired by the Imaging Science Subsystem (ISS), this region is circumscribed by a chain of folded ridges and troughs at ∼55°S latitude. The terrain southward of this boundary is distinguished by its albedo and color contrasts, elevated temperatures, extreme geologic youth, and narrow tectonic rifts that exhibit coarse-grained ice and coincide with the hottest temperatures measured in the region. Jets of fine icy particles that supply Saturns E ring emanate from this province, carried aloft by water vapor probably venting from subsurface reservoirs of liquid water. The shape of Enceladus suggests a possible intense heating epoch in the past by capture into a 1:4 secondary spin/orbit resonance.


Nature | 2005

Imaging of Titan from the Cassini spacecraft

Carolyn C. Porco; Emily Baker; John M. Barbara; K. A. Beurle; Andre Brahic; Joseph A. Burns; Sebastien Charnoz; N. J. Cooper; Douglas Duane Dawson; Anthony D. Del Genio; Tilmann Denk; Luke Dones; Ulyana A. Dyudina; Michael W. Evans; S. Fussner; Bernd Giese; Kevin R. Grazier; Paul Helfenstein; Andrew P. Ingersoll; Robert A. Jacobson; Torrence V. Johnson; Alfred S. McEwen; Carl D. Murray; Gerhard Neukum; W. M. Owen; Jason Perry; Thomas Roatsch; Joseph Nicholas Spitale; Steven W. Squyres; Peter C. Thomas

Titan, the largest moon of Saturn, is the only satellite in the Solar System with a substantial atmosphere. The atmosphere is poorly understood and obscures the surface, leading to intense speculation about Titans nature. Here we present observations of Titan from the imaging science experiment onboard the Cassini spacecraft that address some of these issues. The images reveal intricate surface albedo features that suggest aeolian, tectonic and fluvial processes; they also show a few circular features that could be impact structures. These observations imply that substantial surface modification has occurred over Titans history. We have not directly detected liquids on the surface to date. Convective clouds are found to be common near the south pole, and the motion of mid-latitude clouds consistently indicates eastward winds, from which we infer that the troposphere is rotating faster than the surface. A detached haze at an altitude of 500 km is 150–200 km higher than that observed by Voyager, and more tenuous haze layers are also resolved.


Journal of Geophysical Research | 1999

Does Europa have a subsurface ocean? Evaluation of the geological evidence

Robert T. Pappalardo; M. J. S. Belton; H. H. Breneman; Michael H. Carr; Clark R. Chapman; G. C. Collins; Tilmann Denk; Sarah A. Fagents; P. E. Geissler; Bernd Giese; Ronald Greeley; Richard Greenberg; James W. Head; Paul Helfenstein; Gregory V. Hoppa; S. D. Kadel; Kenneth P. Klaasen; James Klemaszewski; K. P. Magee; Alfred S. McEwen; Jeffrey M. Moore; W. B. Moore; G. Neukum; Cynthia B. Phillips; Louise M. Prockter; Gerald Schubert; David A. Senske; R. Sullivan; B. R. Tufts; Elizabeth P. Turtle

It has been proposed that Jupiters satellite Europa currently possesses a global subsurface ocean of liquid water. Galileo gravity data verify that the satellite is differentiated into an outer H2O layer about 100 km thick but cannot determine the current physical state of this layer (liquid or solid). Here we summarize the geological evidence regarding an extant subsurface ocean, concentrating on Galileo imaging data. We describe and assess nine pertinent lines of geological evidence: impact morphologies, lenticulae, cryovolcanic features, pull-apart bands, chaos, ridges, surface frosts, topography, and global tectonics. An internal ocean would be a simple and comprehensive explanation for a broad range of observations; however, we cannot rule out the possibility that all of the surface morphologies could be due to processes in warm, soft ice with only localized or partial melting. Two different models of impact flux imply very different surface ages for Europa; the model favored here indicates an average age of ∼50 Myr. Searches for evidence of current geological activity on Europa, such as plumes or surface changes, have yielded negative results to date. The current existence of a global subsurface ocean, while attractive in explaining the observations, remains inconclusive. Future geophysical measurements are essential to determine conclusively whether or not there is a liquid water ocean within Europa today.


Nature | 1998

Evidence for non-synchronous rotation of Europa

P. E. Geissler; Richard Greenberg; Gregory V. Hoppa; Paul Helfenstein; Alfred S. McEwen; Robert T. Pappalardo; R. A. Tufts; Maureen E. Ockert-Bell; Robert John Sullivan; Ronald Greeley; M. J. S. Belton; Tilmann Denk; Beth E. Clark; Joseph A. Burns; J. Veverka

Non-synchronous rotation of Europa was predicted on theoretical grounds, by considering the orbitally averaged torque exerted by Jupiter on the satellites tidal bulges. If Europas orbit were circular, or the satellite were comprised of a frictionless fluid without tidal dissipation, this torque would average to zero. However, Europa has a small forced eccentricity e ≈ 0.01 (ref. 2), generated by its dynamical interaction with Io and Ganymede, which should cause the equilibrium spin rate of the satellite to be slightly faster than synchronous. Recent gravity data suggest that there may be a permanent asymmetry in Europas interior mass distribution which is large enough to offset the tidal torque; hence, if non-synchronous rotation is observed, the surface is probably decoupled from the interior by a subsurface layer of liquid or ductile ice. Non-synchronous rotation was invoked to explain Europas global system of lineaments and an equatorial region of rifting seen in Voyager images,. Here we report an analysis of the orientation and distribution of these surface features, based on initial observations made by the Galileo spacecraft. We find evidence that Europa spins faster than the synchronous rate (or did so in the past), consistent with the possibility of a global subsurface ocean.


Science | 2010

Formation of Iapetus’ Extreme Albedo Dichotomy by Exogenically Triggered Thermal Ice Migration

John R. Spencer; Tilmann Denk

Iapetus Revealed The striking appearance of Saturns moon Iapetus—half black and half white—has puzzled astronomers for over three centuries. Now Spencer and Denk (p. 432, published online 10 December) present an explanation for this asymmetry: A thermally controlled runaway migration of water ice triggered by exogenic deposition of dark material on the moons leading darker side, which faces the direction of motion of the moon in its orbit around Saturn. This mechanism is unique to Iapetus because it rotates slowly enough to allow large temperature variations to arise, it is small enough to allow long-range migration of water, and there is a source of dust to trigger the process. In a related paper, Denk et al. (p. 435, published online 10 December) present data derived from the Cassini Imaging Science Subsystem that reveal that both dark and bright materials on the leading side of Iapetus are redder than their trailing-side counterparts. This asymmetry results from the deposition of dust and debris from other moons in the saturnian system—the very same process that initiates the thermal segregation proposed above. Thermal migration of water ice explains the observed color asymmetry of Saturn’s unusual moon, Iapetus. The extreme albedo asymmetry of Saturn’s moon Iapetus, which is about 10 times as bright on its trailing hemisphere as on its leading hemisphere, has been an enigma for three centuries. Deposition of exogenic dark material on the leading side has been proposed as a cause, but this alone cannot explain the global shape, sharpness, and complexity of the transition between Iapetus’ bright and dark terrain. We demonstrate that all these characteristics, and the asymmetry’s large amplitude, can be plausibly explained by runaway global thermal migration of water ice, triggered by the deposition of dark material on the leading hemisphere. This mechanism is unique to Iapetus among the saturnian satellites because its slow rotation produces unusually high daytime temperatures and water ice sublimation rates for a given albedo.


Nature | 2007

Hyperion's sponge-like appearance

Peter C. Thomas; J. W. Armstrong; Sami W. Asmar; Joseph A. Burns; Tilmann Denk; Bernd Giese; Paul Helfenstein; L. Iess; Torrence V. Johnson; Alfred S. McEwen; L. Nicolaisen; Carolyn C. Porco; Nicole J. Rappaport; J. Richardson; L. Somenzi; Paolo Tortora; Elizabeth P. Turtle; J. Veverka

Hyperion is Saturn’s largest known irregularly shaped satellite and the only moon observed to undergo chaotic rotation. Previous work has identified Hyperion’s surface as distinct from other small icy objects but left the causes unsettled. Here we report high-resolution images that reveal a unique sponge-like appearance at scales of a few kilometres. Mapping shows a high surface density of relatively well-preserved craters two to ten kilometres across. We have also determined Hyperion’s size and mass, and calculated the mean density as 544 ± 50 kg m-3, which indicates a porosity of >40 per cent. The high porosity may enhance preservation of craters by minimizing the amount of ejecta produced or retained, and accordingly may be the crucial factor in crafting this unusual surface.


Archive | 2009

Icy Satellites: Geological Evolution and Surface Processes

R. Jaumann; R.N. Clark; Francis Nimmo; Amanda R. Hendrix; Bonnie J. Buratti; Tilmann Denk; Jeffrey M. Moore; Paul M. Schenk; S. J. Ostro; Ralf Srama

The sizes of the Saturnian icy satellites range from ~ 1;500 km in diameter (Rhea) to ~20km (Calypso), and even smaller ‘rocks’ of only a kilometer in diameter are common in the system. All these bodies exhibit remarkable, unique features and unexpected diversity. In this chapter, we will mostly focus on the ‘medium-sized icy objects’ Mimas, Tethys, Dione, Rhea, Iapetus, Phoebe and Hyperion, and consider small objects only where appropriate, whereas Titan and Enceladus will be described in separate chapters. Mimas and Tethys show impact craters caused by bodies that were almost large enough to break them apart. Iapetus is unique in the Saturnian system because of its extreme global brightness dichotomy. Tectonic activity varies widely — from inactive Mimas through extensional terrains on Rhea and Dione to the current cryovolcanic eruptions on Enceladus — and is not necessarily correlated with predicted tidal stresses. Likely sources of stress include impacts, despinning, reorientation and volume changes. Accretion of dark material originating from outside the Saturnian system may explain the surface contamination that prevails in the whole satellite system, while coating by Saturns E-ring particles brightens the inner satellites.


Science | 2010

Iapetus: unique surface properties and a global color dichotomy from Cassini imaging.

Tilmann Denk; Gerhard Neukum; Thomas Roatsch; Carolyn C. Porco; Joseph A. Burns; Götz G. Galuba; N. Schmedemann; Paul Helfenstein; Peter C. Thomas; Roland Wagner; Robert A. West

Iapetus Revealed The striking appearance of Saturns moon Iapetus—half black and half white—has puzzled astronomers for over three centuries. Now Spencer and Denk (p. 432, published online 10 December) present an explanation for this asymmetry: A thermally controlled runaway migration of water ice triggered by exogenic deposition of dark material on the moons leading darker side, which faces the direction of motion of the moon in its orbit around Saturn. This mechanism is unique to Iapetus because it rotates slowly enough to allow large temperature variations to arise, it is small enough to allow long-range migration of water, and there is a source of dust to trigger the process. In a related paper, Denk et al. (p. 435, published online 10 December) present data derived from the Cassini Imaging Science Subsystem that reveal that both dark and bright materials on the leading side of Iapetus are redder than their trailing-side counterparts. This asymmetry results from the deposition of dust and debris from other moons in the saturnian system—the very same process that initiates the thermal segregation proposed above. Thermal migration of water ice explains the observed color asymmetry of Saturn’s unusual moon, Iapetus. Since 2004, Saturn’s moon Iapetus has been observed repeatedly with the Imaging Science Subsystem of the Cassini spacecraft. The images show numerous impact craters down to the resolution limit of ~10 meters per pixel. Small, bright craters within the dark hemisphere indicate a dark blanket thickness on the order of meters or less. Dark, equator-facing and bright, poleward-facing crater walls suggest temperature-driven water-ice sublimation as the process responsible for local albedo patterns. Imaging data also reveal a global color dichotomy, wherein both dark and bright materials on the leading side have a substantially redder color than the respective trailing-side materials. This global pattern indicates an exogenic origin for the redder leading-side parts and suggests that the global color dichotomy initiated the thermal formation of the global albedo dichotomy.


Science | 2003

Cassini Imaging of Jupiter's Atmosphere, Satellites, and Rings

Carolyn C. Porco; Robert A. West; Alfred S. McEwen; Anthony D. Del Genio; Andrew P. Ingersoll; Peter C. Thomas; S. W. Squyres; Luke Dones; Carl D. Murray; Torrence V. Johnson; Joseph A. Burns; Andre Brahic; Gerhard Neukum; Joseph Veverka; John M. Barbara; Tilmann Denk; Michael W. Evans; Joseph Ferrier; P. E. Geissler; Paul Helfenstein; Thomas Roatsch; Henry Blair Throop; Matthew S. Tiscareno; Ashwin R. Vasavada


Science | 2005

Cassini Imaging Science: Initial Results on Saturn's Rings and Small Satellites

Carolyn C. Porco; E. Baker; John M. Barbara; K. A. Beurle; Andre Brahic; Joseph A. Burns; Sebastien Charnoz; N. J. Cooper; Douglas Duane Dawson; A. D. Del Genio; Tilmann Denk; Luke Dones; Ulyana A. Dyudina; Michael W. Evans; Bernd Giese; Kevin R. Grazier; Paul Helfenstein; A. P. Ingersoll; R. A. Jacobson; Torrence V. Johnson; Alfred S. McEwen; Carl D. Murray; Gerhard Neukum; W. M. Owen; Jason Perry; Thomas Roatsch; Joseph Nicholas Spitale; S. W. Squyres; Peter C. Thomas; Matthew S. Tiscareno

Collaboration


Dive into the Tilmann Denk's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gerhard Neukum

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

G. Neukum

Free University of Berlin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bernd Giese

German Aerospace Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Torrence V. Johnson

California Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge