Tim Burton
University of Glasgow
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Tim Burton.
Proceedings of the Royal Society of London B: Biological Sciences | 2011
Tim Burton; Shaun S. Killen; J. D. Armstrong; Neil B. Metcalfe
Individual differences in the energy cost of self-maintenance (resting metabolic rate, RMR) are substantial and the focus of an emerging research area. These differences may influence fitness because self-maintenance is considered as a life-history component along with growth and reproduction. In this review, we ask why do some individuals have two to three times the ‘maintenance costs’ of conspecifics, and what are the fitness consequences? Using evidence from a range of species, we demonstrate that diverse factors, such as genotypes, maternal effects, early developmental conditions and personality differences contribute to variation in individual RMR. We review evidence that RMR is linked with fitness, showing correlations with traits such as growth and survival. However, these relationships are modulated by environmental conditions (e.g. food supply), suggesting that the fitness consequences of a given RMR may be context-dependent. Then, using empirical examples, we discuss broad-scale reasons why variation in RMR might persist in natural populations, including the role of both spatial and temporal variation in selection pressures and trans-generational effects. To conclude, we discuss experimental approaches that will enable more rigorous examination of the causes and consequences of individual variation in this key physiological trait.
Proceedings of the Royal Society B: Biological Sciences | 2014
Tim Burton; Neil B. Metcalfe
The consequences of early developmental conditions for performance in later life are now subjected to convergent interest from many different biological sub-disciplines. However, striking data, largely from the biomedical literature, show that environmental effects experienced even before conception can be transmissible to subsequent generations. Here, we review the growing evidence from natural systems for these cross-generational effects of early life conditions, showing that they can be generated by diverse environmental stressors, affect offspring in many ways and can be transmitted directly or indirectly by both parental lines for several generations. In doing so, we emphasize why early life might be so sensitive to the transmission of environmentally induced effects across generations. We also summarize recent theoretical advancements within the field of developmental plasticity, and discuss how parents might assemble different ‘internal’ and ‘external’ cues, even from the earliest stages of life, to instruct their investment decisions in offspring. In doing so, we provide a preliminary framework within the context of adaptive plasticity for understanding inter-generational phenomena that arise from early life conditions.
Ecology | 2013
Tim Burton; Simon McKelvey; David C. Stewart; J. D. Armstrong; Neil B. Metcalfe
Both the environments experienced by a mother as a juvenile and an adult can affect her investment in offspring. However, the implications of these maternal legacies, both juvenile and adult, for offspring fitness in natural populations are unclear. We investigated whether the juvenile growth rate and adult reproductive traits (length, body condition, and reproductive investment at spawning) of female wild Atlantic salmon (Salmo salar) were related to the growth and survival of their offspring. Adult salmon captured on their upstream migration were used to create experimental full-sib clutches of eggs, which were mixed and then placed in artificial nests in a natural stream that lacked salmon due to a migration barrier. Four months later we resampled the stream to obtain family-level estimates of offspring size and survival. Mothers that had grown slowly as juveniles (as determined by scalimetry) but had invested heavily in reproduction (egg production for a given body length) and were in relatively poor body condition (somatic mass for a given body length) at spawning produced the largest eggs. Larger eggs resulted in larger juveniles and higher juvenile survival. However, after controlling for egg size, offspring growth was positively related to maternal juvenile growth rate and reproductive investment. The predictors of offspring survival (i.e., reproductive success) varied with the juvenile growth rate of the mother: If females grew slowly as juveniles, their reproductive success was negatively related to their own body condition. In contrast, the reproductive success of females that grew quickly as juveniles was instead related positively to their own body condition. Our results show that maternal influences on offspring in the wild can be complex, with reproductive success related to the early life performance of the mother, as well as her state at the time of breeding.
Proceedings of the Royal Society of London B: Biological Sciences | 2012
Tim Burton; Mia O. Hoogenboom; N. D. Beevers; J. D. Armstrong; Neil B. Metcalfe
We investigated whether among-sibling differences in the phenotypes of juvenile fish were systematically related to the position in the egg mass where each individual developed during oogenesis. We sampled eggs from the front, middle and rear thirds of the egg mass in female brown trout of known dominance rank. In the resulting juveniles, we then measured traits that are related to individual fitness: body size, social status and standard metabolic rate (SMR). When controlling for differences among females in mean egg size, siblings from dominant mothers were initially larger (and had a lower mass-corrected SMR) if they developed from eggs at the rear of the egg mass. However, heterogeneity in the size of siblings from different positions in the egg mass diminished in lower-ranking females. Location of the egg within the egg mass also affected the social dominance of the resulting juvenile fish, although the direction of this effect varied with developmental age. This study provides the first evidence of a systematic basis for among-sibling differences in the phenotypes of offspring in a highly fecund organism.
Journal of Fish Biology | 2011
Mia O. Hoogenboom; J. D. Armstrong; Mike S. Miles; Tim Burton; Ton G. G. Groothuis; Neil B. Metcalfe
This study demonstrated that, irrespective of hormone type or dose, administering cocoa butter implants during egg development affected the growth of female brown trout Salmo trutta and reduced the size of their offspring. Cortisol treatment also increased adult mortality. Caution is urged in the use of implants for studies of maternal hormonal influences on adult fishes and their offspring.
Behavioral Ecology | 2016
Tim Burton; Grethe Robertsen; David C. Stewart; Simon McKelvey; J. D. Armstrong; Neil B. Metcalfe
Lay Summary In nature, vast differences in growth or size are frequently observed among young born to mothers of different age. However, it is unknown if there can be other, more subtle differences among offspring born to young versus old mothers? In Atlantic salmon, we reveal that despite being similar in size, juveniles from younger-maturing mothers are more aggressive, but poorer at competing for food than juveniles from older-maturing mothers
The Journal of Experimental Biology | 2018
Tim Burton; Bettina Zeis; Sigurd Einum
ABSTRACT We present a method for automating the measurement of upper thermal limits in small aquatic organisms. Upper thermal limits are frequently defined by the cessation of movement at high temperature, with measurement being performed by manual observation. Consequently, estimates of upper thermal limits may be subject to error and bias, both within and among observers. Our method utilises video-based tracking software to record the movement of individuals when exposed to high, lethal temperatures. We develop an algorithm in the R computing language that can objectively identify the loss of locomotory function from tracking data. Using independent experimental data, we validate our approach by demonstrating the expected response in upper thermal limits to acclimation temperature. Summary: We present a method for the automated measurement of upper thermal tolerance in small aquatic organisms from video data.
Functional Ecology | 2011
Tim Burton; Mia O. Hoogenboom; J. D. Armstrong; Ton G. G. Groothuis; Neil B. Metcalfe
Ecology of Freshwater Fish | 2013
Tim Burton; Simon McKelvey; Dave C. Stewart; J. D. Armstrong; Neil B. Metcalfe
Functional Ecology | 2011
Tim Burton; Mia O. Hoogenboom; J. D. Armstrong; Antonius Groothuis; Neil B. Metcalfe; Tony D. Williams