Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tim F. Greten is active.

Publication


Featured researches published by Tim F. Greten.


The New England Journal of Medicine | 2008

Sorafenib in Advanced Hepatocellular Carcinoma

Josep M. Llovet; Sergio Ricci; Vincenzo Mazzaferro; Philip Hilgard; Edward Gane; Jean Frédéric Blanc; André Cosme de Oliveira; Armando Santoro; Jean Luc Raoul; Alejandro Forner; Myron Schwartz; Camillo Porta; Stefan Zeuzem; Luigi Bolondi; Tim F. Greten; Peter R. Galle; Jean Francois Seitz; Ivan Borbath; Dieter Häussinger; Tom Giannaris; M. Shan; M. Moscovici; Dimitris Voliotis; Jordi Bruix

BACKGROUND No effective systemic therapy exists for patients with advanced hepatocellular carcinoma. A preliminary study suggested that sorafenib, an oral multikinase inhibitor of the vascular endothelial growth factor receptor, the platelet-derived growth factor receptor, and Raf may be effective in hepatocellular carcinoma. METHODS In this multicenter, phase 3, double-blind, placebo-controlled trial, we randomly assigned 602 patients with advanced hepatocellular carcinoma who had not received previous systemic treatment to receive either sorafenib (at a dose of 400 mg twice daily) or placebo. Primary outcomes were overall survival and the time to symptomatic progression. Secondary outcomes included the time to radiologic progression and safety. RESULTS At the second planned interim analysis, 321 deaths had occurred, and the study was stopped. Median overall survival was 10.7 months in the sorafenib group and 7.9 months in the placebo group (hazard ratio in the sorafenib group, 0.69; 95% confidence interval, 0.55 to 0.87; P<0.001). There was no significant difference between the two groups in the median time to symptomatic progression (4.1 months vs. 4.9 months, respectively, P=0.77). The median time to radiologic progression was 5.5 months in the sorafenib group and 2.8 months in the placebo group (P<0.001). Seven patients in the sorafenib group (2%) and two patients in the placebo group (1%) had a partial response; no patients had a complete response. Diarrhea, weight loss, hand-foot skin reaction, and hypophosphatemia were more frequent in the sorafenib group. CONCLUSIONS In patients with advanced hepatocellular carcinoma, median survival and the time to radiologic progression were nearly 3 months longer for patients treated with sorafenib than for those given placebo. (ClinicalTrials.gov number, NCT00105443.)


Cell | 2004

IKKβ Links Inflammation and Tumorigenesis in a Mouse Model of Colitis-Associated Cancer

Florian R. Greten; Lars Eckmann; Tim F. Greten; Jin Mo Park; Zhi-Wei Li; Laurence J. Egan; Martin F. Kagnoff; Michael Karin

A link between inflammation and cancer has long been suspected, but its molecular nature remained ill defined. A key player in inflammation is transcription factor NF-kappaB whose activity is triggered in response to infectious agents and proinflammatory cytokines via the IkappaB kinase (IKK) complex. Using a colitis-associated cancer model, we show that although deletion of IKKbeta in intestinal epithelial cells does not decrease inflammation, it leads to a dramatic decrease in tumor incidence without affecting tumor size. This is linked to increased epithelial apoptosis during tumor promotion. Deleting IKKbeta in myeloid cells, however, results in a significant decrease in tumor size. This deletion diminishes expression of proinflammatory cytokines that may serve as tumor growth factors, without affecting apoptosis. Thus, specific inactivation of the IKK/NF-kappaB pathway in two different cell types can attenuate formation of inflammation-associated tumors. In addition to suppressing apoptosis in advanced tumors, IKKbeta may link inflammation to cancer.


European Journal of Cancer | 2012

EASL-EORTC clinical practice guidelines: management of hepatocellular carcinoma

Josep M. Llovet; Michel Ducreux; Riccardo Lencioni; Adrian M. Di Bisceglie; Peter R. Galle; Jean-François Dufour; Tim F. Greten; Eric Raymond; Tania Roskams; Thierry de Baere; Vincenzo Mazzaferro; M. Bernardi; Jordi Bruix; Massimo Colombo; Andrew X. Zhu

EASL–EORTC Clinical Practice Guidelines (CPG) on the management of hepatocellular carcinoma (HCC) define the use of surveillance, diagnosis, and therapeutic strategies recommended for patients with this type of cancer. This is the first European joint effort by the European Association for the Study of the Liver (EASL) and the European Organization for Research and Treatment of Cancer (EORTC) to provide common guidelines for the management of hepatocellular carcinoma. These guidelines update the recommendations reported by the EASL panel of experts in HCC published in 2001 [1]. Several clinical and scientific advances have occurred during the past decade and, thus, a modern version of the document is urgently needed. The purpose of this document is to assist physicians, patients, health-care providers, and health-policy makers from Europe and worldwide in the decision-making process according to evidencebased data. Users of these guidelines should be aware that the recommendations are intended to guide clinical practice in circumstances where all possible resources and therapies are available. Thus, they should adapt the recommendations to their local regulations and/or team capacities, infrastructure, and cost– benefit strategies. Finally, this document sets out some recommendations that should be instrumental in advancing the research and knowledge of this disease and ultimately contribute to improve patient care. The EASL–EORTC CPG on the management of hepatocellular carcinoma provide recommendations based on the level of evidence and the strength of the data (the classification of evidence is adapted from National Cancer Institute [2]) (Table 1A) and the strength of recommendations following previously reported systems (GRADE systems) (Table 1B).


Gastroenterology | 2008

A New Population of Myeloid-Derived Suppressor Cells in Hepatocellular Carcinoma Patients Induces CD4+CD25+Foxp3+ T Cells

Bastian Hoechst; Lars A. Ormandy; Matthias Ballmaier; Frank Lehner; Christine Krüger; Michael P. Manns; Tim F. Greten; Firouzeh Korangy

BACKGROUND & AIMS Several studies have shown that development of hepatocellular carcinoma (HCC) generates a number of immune suppressive mechanisms in these patients. Myeloid-derived suppressor cells (MDSC) are a heterogeneous population of cells that have been shown to inhibit T-cell responses in tumor-bearing mice, but little is known about these cells in humans owing to a lack of specific markers. In this study, we have investigated the frequency and function of a new population of MDSC denoted here as CD14(+)HLA-DR(-/low) in HCC patients. We have also identified a novel, MDSC-mediated immune regulatory pathway in these patients. METHODS We have directly isolated and characterized MDSCs for phenotype and function from peripheral blood (n = 111) and tumor (n = 12) of patients with HCC. RESULTS The frequency of CD14(+)HLA-DR(-/low) cells in peripheral blood mononuclear cells (PBMC) from HCC patients was significantly increased in comparison with healthy controls. CD14(+) HLA-DR(-/low) cells were unable to stimulate an allogeneic T-cell response, suppressed autologous T-cell proliferation, and had high arginase activity, a hallmark characteristic of MDSC. Most important, CD14(+)HLA-DR(-/low) cells from HCC patients induced a CD4(+)CD25(+)Foxp3(+) regulatory T-cell population when cocultured with autologous T cells. CONCLUSION CD14(+)HLA-DR(-/low) cells are a new population of MDSC increased in blood and tumor of HCC patients. We propose a new mechanism by which MDSC exert their immunosuppressive function, through the induction of CD4(+)CD25(+)Foxp3(+) regulatory T cells in cocultured CD4(+) T cells. Understanding the mechanism of action of MDSC in HCC patients is important in the design of effective immunotherapeutic protocols.


Cancer Research | 2005

Increased populations of regulatory T cells in peripheral blood of patients with hepatocellular carcinoma.

Lars A. Ormandy; Tina Hillemann; Heiner Wedemeyer; Michael P. Manns; Tim F. Greten; Firouzeh Korangy

Hepatocellular carcinoma (HCC) is the fifth most common cancer worldwide with a poor prognosis and one for which immunotherapy remains a viable option. Experimental tumor models have shown that regulatory T cells, a functionally unique subset of T cells, can suppress effective antitumor immune responses. This suppression might explain the poor outcome of some of the immunotherapy protocols currently being used. A better understanding of the role of regulatory T cells in HCC is important for design of future immunotherapy-based clinical protocols. We have studied regulatory T cells from 84 patients with HCC and 74 controls, including healthy donors, patients with chronic hepatitis B virus and hepatitis C virus infection and nonviral liver cirrhosis. Regulatory T cells were identified by fluorescence-activated cell sorting using a panel of antibodies and by real-time PCR analysis for Foxp3 expression. Functional studies were done to analyze their inhibitory role. Finally, regulatory T cells were analyzed in tumors and ascites from patients with HCC. Patients with HCC have increased numbers of CD4+CD25+ regulatory T cells in their peripheral blood, which express high levels of HLA-DR, GITR, and low or no CD45RA. These cells were anergic toward T-cell receptor stimulation and, when cocultured with activated CD4+CD25- cells, potently suppressed their proliferation and cytokine secretion. There were also high numbers of regulatory T cells in tumor-infiltrating lymphocytes of HCC patients comparable with the increase in their peripheral blood. Our data suggest that the increase in frequency of regulatory T cells might play a role in modulation of the immune response against HCC and could be important in design of immunotherapeutic approaches.


Science | 2017

Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade

Dung T. Le; Jennifer N. Durham; Kellie Nicole Smith; Hao Wang; Bjarne Bartlett; Laveet K. Aulakh; Steve Lu; Holly Kemberling; Cara Wilt; Brandon Luber; Fay Wong; Nilofer Saba Azad; Agnieszka A. Rucki; Daniel A. Laheru; Ross C. Donehower; Atif Zaheer; George A. Fisher; Todd S. Crocenzi; James J. Lee; Tim F. Greten; Austin Duffy; Kristen K. Ciombor; Aleksandra Eyring; Bao H. Lam; Andrew K. Joe; S. Peter Kang; Matthias Holdhoff; Ludmila Danilova; Leslie Cope; Christian Meyer

Predicting responses to immunotherapy Colon cancers with loss-of-function mutations in the mismatch repair (MMR) pathway have favorable responses to PD-1 blockade immunotherapy. In a phase 2 clinical trial, Le et al. showed that treatment success is not just limited to colon cancer (see the Perspective by Goswami and Sharma). They found that a wide range of different cancer types with MMR deficiency also responded to PD-1 blockade. The trial included some patients with pancreatic cancer, which is one of the deadliest forms of cancer. The clinical trial is still ongoing, and around 20% of patients have so far achieved a complete response. MMR deficiency appears to be a biomarker for predicting successful treatment outcomes for several solid tumors and indicates a new therapeutic option for patients harboring MMR-deficient cancers. Science, this issue p. 409; see also p. 358 A pan-cancer biomarker is identified that can predict successful response to cancer immunotherapy in human patients. The genomes of cancers deficient in mismatch repair contain exceptionally high numbers of somatic mutations. In a proof-of-concept study, we previously showed that colorectal cancers with mismatch repair deficiency were sensitive to immune checkpoint blockade with antibodies to programmed death receptor–1 (PD-1). We have now expanded this study to evaluate the efficacy of PD-1 blockade in patients with advanced mismatch repair–deficient cancers across 12 different tumor types. Objective radiographic responses were observed in 53% of patients, and complete responses were achieved in 21% of patients. Responses were durable, with median progression-free survival and overall survival still not reached. Functional analysis in a responding patient demonstrated rapid in vivo expansion of neoantigen-specific T cell clones that were reactive to mutant neopeptides found in the tumor. These data support the hypothesis that the large proportion of mutant neoantigens in mismatch repair–deficient cancers make them sensitive to immune checkpoint blockade, regardless of the cancers’ tissue of origin.


Nature Communications | 2016

Recommendations for myeloid-derived suppressor cell nomenclature and characterization standards

Vincenzo Bronte; Sven Brandau; Shu-Hsia Chen; Mario P. Colombo; Alan B. Frey; Tim F. Greten; Susanna Mandruzzato; Peter J. Murray; Augusto C. Ochoa; Suzanne Ostrand-Rosenberg; Paulo C. Rodriguez; Antonio Sica; Viktor Umansky; Robert H. Vonderheide; Dmitry I. Gabrilovich

Myeloid-derived suppressor cells (MDSC) are a heterogeneous population expanded in cancer and other chronic inflammatory conditions. Here the authors identify the challenges and propose a set of minimal reporting guidelines for mouse and human MDSC.


Hepatology | 2009

Myeloid Derived Suppressor Cells Inhibit Natural Killer Cells in Patients with Hepatocellular Carcinoma via the NKp30 Receptor

Bastian Hoechst; Torsten Voigtlaender; Lars A. Ormandy; Jaba Gamrekelashvili; Fei Zhao; Heiner Wedemeyer; Frank Lehner; Michael P. Manns; Tim F. Greten; Firouzeh Korangy

Several immune suppressive mechanisms that evade the host immune response have been described in patients with hepatocellular carcinoma (HCC); one of these mechanisms is expansion of myeloid‐derived suppressor cells (MDSCs). MDSCs have been shown to inhibit T cell responses in tumor‐bearing mice, but little is known about these cells in humans. Here, we have analyzed and characterized the effect of MDSCs on the innate immune system, in particular, their interaction with natural killer (NK) cells in patients with HCC. MDSCs from patients with HCC inhibited autologous NK cell cytotoxicity and cytokine secretion when cultured together in vitro. This suppression was dependent on cell contact, but did not rely on the arginase activity of MDSCs, which is a hallmark function of these cells. However, MDSC‐mediated inhibition of NK cell function was dependent mainly on the NKp30 on NK cells. Conclusion: Our study suggests a new role for MDSCs in patients with HCC in disarming the innate immune system and further contributing to the immune suppressor network in these patients. These findings have important implications when designing immunotherapy protocols. (HEPATOLOGY 2009.)


International Immunopharmacology | 2011

Myeloid derived suppressor cells in human diseases

Tim F. Greten; Michael P. Manns; Firouzeh Korangy

Myeloid derived suppressor cells (MDSC) have been described as a heterogeneous cell population with potent immune suppressor function in mice. Limited data are available on MDSC in human diseases. Interpretation of these data is complicated by the fact that different markers have been used to analyze human MDSC subtypes in various clinical settings. Human MDSC are CD11b+, CD33+, HLA-DR(neg/low) and can be divided into granulocytic CD14⁻ and monocytic CD14+ subtypes. Interleukin 4Rα, VEGFR, CD15 and CD66b have been suggested to be more specific markers for human MDSC, however these markers can only be found on some MDSC subsets. Until today the best marker for human MDSC remains their suppressor function, which can be either direct or indirect through the induction of regulatory T cells. Immune suppressor activity has been associated with high arginase 1 and iNOS activity as well as ROS production by MDSC. Not only in murine models, but even more importantly in patients with cancer, different drugs have been shown to either reverse the immune suppressor function of MDSC or directly target these cells. Systemic treatment with all-trans-retinoic acid has been shown to mature human MDSC and reverse their immune suppressor function. Alternatively, MDSC can be targeted by treatment with the multi-targeted receptor tyrosine kinase inhibitor sunitinib. This review will provide a comprehensive summary of the recent literature on human MDSC.


Gastroenterology | 2008

Myeloid-Derived Suppressor Cells in Inflammatory Bowel Disease: A New Immunoregulatory Pathway

Lydia Haile; Reinhard von Wasielewski; Jaba Gamrekelashvili; Christine Krüger; Oliver Bachmann; Astrid M. Westendorf; Jan Buer; Roland S. Liblau; Michael P. Manns; Firouzeh Korangy; Tim F. Greten

BACKGROUND & AIMS CD11b(+)Gr-1(+) myeloid-derived suppressor cells (MDSCs) have been shown to cause T-cell tolerance in tumor-bearing mice; however, little is known about the role of MDSCs in chronic inflammation. Here, for the first time, we have identified and analyzed their role in inflammatory bowel disease (IBD). METHODS Repetitive adoptive transfer of clone 4/T-cell receptor (CL4-TCR) transgenic CD8(+) T cells into VILLIN-hemagglutinin (HA) transgenic mice was performed on days 1, 12, and 27. Recipient mice were analyzed for immunopathology, HA-specific CD8(+) T-cell responses, and CD11b(+)Gr-1(+) MDSCs (frequency, phenotype, expression analysis, and in vitro as well as in vivo function). In addition, peripheral blood from patients with active Crohns disease and ulcerative colitis was examined for the presence and function of human MDSCs denoted as CD14(+)HLA-DR(-/low) cells. RESULTS Repetitive transfer of HA-specific CD8(+) T cells prevented VILLIN-HA recipient mice from development of severe enterocolitis, which is seen after a single transfer of T cells. Repeated transfer of antigen-specific T cells led to an increase in the frequency of nitric oxide synthase 2 and arginase-expressing CD11b(+)Gr-1(+) MDSCs in spleen and intestine of VILLIN-HA mice with immunosuppressive function. Cotransfer of MDSCs with HA-specific CD8(+) T cells into naive VILLIN-HA mice ameliorated enterocolitis, indicating a direct immune regulatory effect of MDSCs on induction of IBD by antigen-specific T cells. Finally, an increase in the frequency of human MDSCs with suppressor function was observed in peripheral blood from patients with IBD. CONCLUSIONS These results identify MDSCs as a new immune regulatory pathway in IBD.

Collaboration


Dive into the Tim F. Greten's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Firouzeh Korangy

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Austin G. Duffy

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Chi Ma

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Austin Duffy

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Suzanne Fioravanti

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Seth M. Steinberg

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge