Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tim F. Rayner is active.

Publication


Featured researches published by Tim F. Rayner.


Nucleic Acids Research | 2003

ArrayExpress—a public repository for microarray gene expression data at the EBI

Helen Parkinson; Ugis Sarkans; Mohammadreza Shojatalab; Niran Abeygunawardena; Sergio Contrino; Richard M. R. Coulson; Anna Farne; Gonzalo Garcia Lara; Ele Holloway; Misha Kapushesky; P. Lilja; Gaurab Mukherjee; Ahmet Oezcimen; Tim F. Rayner; Philippe Rocca-Serra; Anjan Sharma; Susanna-Assunta Sansone; Alvis Brazma

ArrayExpress is a public repository for microarray data that supports the MIAME (Minimum Informa-tion About a Microarray Experiment) requirements and stores well-annotated raw and normalized data. As of November 2004, ArrayExpress contains data from ∼12 000 hybridizations covering 35 species. Data can be submitted online or directly from local databases or LIMS in a standard format, and password-protected access to prepublication data is provided for reviewers and authors. The data can be retrieved by accession number or queried by vari-ous parameters such as species, author and array platform. A facility to query experiments by gene and sample properties is provided for a growing subset of curated data that is loaded in to the ArrayExpress data warehouse. Data can be visualized and analysed using Expression Profiler, the integrated data analysis tool. ArrayExpress is available at http://www.ebi.ac.uk/arrayexpress.


Nature Medicine | 2011

Foxp3+ follicular regulatory T cells control the germinal center response

Michelle A. Linterman; Wim Pierson; Sau K. Lee; Axel Kallies; Shimpei Kawamoto; Tim F. Rayner; Monika Srivastava; Devina P. Divekar; Laura L. Beaton; Jennifer J. Hogan; Sidonia Fagarasan; Adrian Liston; Kenneth G C Smith; Carola G. Vinuesa

Follicular helper (TFH) cells provide crucial signals to germinal center B cells undergoing somatic hypermutation and selection that results in affinity maturation. Tight control of TFH numbers maintains self tolerance. We describe a population of Foxp3+Blimp-1+CD4+ T cells constituting 10–25% of the CXCR5highPD-1highCD4+ T cells found in the germinal center after immunization with protein antigens. These follicular regulatory T (TFR) cells share phenotypic characteristics with TFH and conventional Foxp3+ regulatory T (Treg) cells yet are distinct from both. Similar to TFH cells, TFR cell development depends on Bcl-6, SLAM-associated protein (SAP), CD28 and B cells; however, TFR cells originate from thymic-derived Foxp3+ precursors, not naive or TFH cells. TFR cells are suppressive in vitro and limit TFH cell and germinal center B cell numbers in vivo. In the absence of TFR cells, an outgrowth of non–antigen-specific B cells in germinal centers leads to fewer antigen-specific cells. Thus, the TFH differentiation pathway is co-opted by Treg cells to control the germinal center response.


The New England Journal of Medicine | 2012

Genetically Distinct Subsets within ANCA-Associated Vasculitis

Paul A. Lyons; Tim F. Rayner; Sapna Trivedi; Julia U. Holle; Richard A. Watts; David Jayne; Bo Baslund; Paul Brenchley; Annette Bruchfeld; Afzal N. Chaudhry; Jan Willem Cohen Tervaert; Panos Deloukas; C. Feighery; W. L. Gross; Loïc Guillevin; Iva Gunnarsson; Lorraine Harper; Zdenka Hruskova; Mark A. Little; Davide Martorana; Thomas Neumann; Sophie Ohlsson; Sandosh Padmanabhan; Charles D. Pusey; Alan D. Salama; Jan Stephan Sanders; C. O. S. Savage; Mårten Segelmark; Coen A. Stegeman; Vladimir Tesar

BACKGROUND Antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis is a severe condition encompassing two major syndromes: granulomatosis with polyangiitis (formerly known as Wegeners granulomatosis) and microscopic polyangiitis. Its cause is unknown, and there is debate about whether it is a single disease entity and what role ANCA plays in its pathogenesis. We investigated its genetic basis. METHODS A genomewide association study was performed in a discovery cohort of 1233 U.K. patients with ANCA-associated vasculitis and 5884 controls and was replicated in 1454 Northern European case patients and 1666 controls. Quality control, population stratification, and statistical analyses were performed according to standard criteria. RESULTS We found both major-histocompatibility-complex (MHC) and non-MHC associations with ANCA-associated vasculitis and also that granulomatosis with polyangiitis and microscopic polyangiitis were genetically distinct. The strongest genetic associations were with the antigenic specificity of ANCA, not with the clinical syndrome. Anti-proteinase 3 ANCA was associated with HLA-DP and the genes encoding α(1)-antitrypsin (SERPINA1) and proteinase 3 (PRTN3) (P=6.2×10(-89), P=5.6×10(-12,) and P=2.6×10(-7), respectively). Anti-myeloperoxidase ANCA was associated with HLA-DQ (P=2.1×10(-8)). CONCLUSIONS This study confirms that the pathogenesis of ANCA-associated vasculitis has a genetic component, shows genetic distinctions between granulomatosis with polyangiitis and microscopic polyangiitis that are associated with ANCA specificity, and suggests that the response against the autoantigen proteinase 3 is a central pathogenic feature of proteinase 3 ANCA-associated vasculitis. These data provide preliminary support for the concept that proteinase 3 ANCA-associated vasculitis and myeloperoxidase ANCA-associated vasculitis are distinct autoimmune syndromes. (Funded by the British Heart Foundation and others.).


Nucleic Acids Research | 2007

ArrayExpress—a public database of microarray experiments and gene expression profiles

Helen Parkinson; Misha Kapushesky; Mohammadreza Shojatalab; Niran Abeygunawardena; Richard M. R. Coulson; Anna Farne; Ele Holloway; Nikolay Kolesnykov; P. Lilja; Margus Lukk; Roby Mani; Tim F. Rayner; Anjan Sharma; E. William; Ugis Sarkans; Alvis Brazma

ArrayExpress is a public database for high throughput functional genomics data. ArrayExpress consists of two parts—the ArrayExpress Repository, which is a MIAME supportive public archive of microarray data, and the ArrayExpress Data Warehouse, which is a database of gene expression profiles selected from the repository and consistently re-annotated. Archived experiments can be queried by experiment attributes, such as keywords, species, array platform, authors, journals or accession numbers. Gene expression profiles can be queried by gene names and properties, such as Gene Ontology terms and gene expression profiles can be visualized. ArrayExpress is a rapidly growing database, currently it contains data from >50 000 hybridizations and >1 500 000 individual expression profiles. ArrayExpress supports community standards, including MIAME, MAGE-ML and more recently the proposal for a spreadsheet based data exchange format: MAGE-TAB. Availability: .


Nucleic Acids Research | 2009

ArrayExpress update—from an archive of functional genomics experiments to the atlas of gene expression

Helen E. Parkinson; Misha Kapushesky; Nikolay Kolesnikov; Gabriella Rustici; Mohammadreza Shojatalab; Niran Abeygunawardena; Hugo Bérubé; Miroslaw Dylag; Ibrahim Emam; Anna Farne; Ele Holloway; Margus Lukk; James P. Malone; Roby Mani; Ekaterina Pilicheva; Tim F. Rayner; Faisal Ibne Rezwan; Anjan Sharma; Eleanor Williams; Xiangqun Zheng Bradley; Tomasz Adamusiak; Marco Brandizi; Tony Burdett; Richard M. R. Coulson; Maria Krestyaninova; Pavel Kurnosov; Eamonn Maguire; Sudeshna Guha Neogi; Philippe Rocca-Serra; Susanna-Assunta Sansone

ArrayExpress http://www.ebi.ac.uk/arrayexpress consists of three components: the ArrayExpress Repository—a public archive of functional genomics experiments and supporting data, the ArrayExpress Warehouse—a database of gene expression profiles and other bio-measurements and the ArrayExpress Atlas—a new summary database and meta-analytical tool of ranked gene expression across multiple experiments and different biological conditions. The Repository contains data from over 6000 experiments comprising approximately 200 000 assays, and the database doubles in size every 15 months. The majority of the data are array based, but other data types are included, most recently—ultra high-throughput sequencing transcriptomics and epigenetic data. The Warehouse and Atlas allow users to query for differentially expressed genes by gene names and properties, experimental conditions and sample properties, or a combination of both. In this update, we describe the ArrayExpress developments over the last two years.


Cell | 2015

Enhancer Evolution across 20 Mammalian Species

Diego Villar; Camille Berthelot; Sarah Aldridge; Tim F. Rayner; Margus Lukk; Miguel Pignatelli; Thomas J. Park; Robert Deaville; Jonathan Thor Erichsen; Anna J. Jasinska; James M. A. Turner; Mads F. Bertelsen; Elizabeth P. Murchison; Paul Flicek; Duncan T. Odom

Summary The mammalian radiation has corresponded with rapid changes in noncoding regions of the genome, but we lack a comprehensive understanding of regulatory evolution in mammals. Here, we track the evolution of promoters and enhancers active in liver across 20 mammalian species from six diverse orders by profiling genomic enrichment of H3K27 acetylation and H3K4 trimethylation. We report that rapid evolution of enhancers is a universal feature of mammalian genomes. Most of the recently evolved enhancers arise from ancestral DNA exaptation, rather than lineage-specific expansions of repeat elements. In contrast, almost all liver promoters are partially or fully conserved across these species. Our data further reveal that recently evolved enhancers can be associated with genes under positive selection, demonstrating the power of this approach for annotating regulatory adaptations in genomic sequences. These results provide important insight into the functional genetics underpinning mammalian regulatory evolution.


BMC Bioinformatics | 2006

A simple spreadsheet-based, MIAME-supportive format for microarray data: MAGE-TAB

Tim F. Rayner; Philippe Rocca-Serra; Paul T. Spellman; Helen C. Causton; Anna Farne; Ele Holloway; Rafael A. Irizarry; Junmin Liu; Donald Maier; Michael R. Miller; Kjell Petersen; John Quackenbush; Gavin Sherlock; Christian J. Stoeckert; Joseph White; Patricia L. Whetzel; Farrell Wymore; Helen Parkinson; Ugis Sarkans; Catherine A. Ball; Alvis Brazma

BackgroundSharing of microarray data within the research community has been greatly facilitated by the development of the disclosure and communication standards MIAME and MAGE-ML by the MGED Society. However, the complexity of the MAGE-ML format has made its use impractical for laboratories lacking dedicated bioinformatics support.ResultsWe propose a simple tab-delimited, spreadsheet-based format, MAGE-TAB, which will become a part of the MAGE microarray data standard and can be used for annotating and communicating microarray data in a MIAME compliant fashion.ConclusionMAGE-TAB will enable laboratories without bioinformatics experience or support to manage, exchange and submit well-annotated microarray data in a standard format using a spreadsheet. The MAGE-TAB format is self-contained, and does not require an understanding of MAGE-ML or XML.


Journal of Clinical Investigation | 2011

Gene expression profiling of CD8+ T cells predicts prognosis in patients with Crohn disease and ulcerative colitis

James C. Lee; Paul A. Lyons; Eoin F. McKinney; John M. Sowerby; Edward J. Carr; Francesca Bredin; Hannah M. Rickman; Huzefa Ratlamwala; Alexander Hatton; Tim F. Rayner; Miles Parkes; Kenneth G C Smith

Crohn disease (CD) and ulcerative colitis (UC) are increasingly common, chronic forms of inflammatory bowel disease. The behavior of these diseases varies unpredictably among patients. Identification of reliable prognostic biomarkers would enable treatment to be personalized so that patients destined to experience aggressive disease could receive appropriately potent therapies from diagnosis, while those who will experience more indolent disease are not exposed to the risks and side effects of unnecessary immunosuppression. Using transcriptional profiling of circulating T cells isolated from patients with CD and UC, we identified analogous CD8+ T cell transcriptional signatures that divided patients into 2 otherwise indistinguishable subgroups. In both UC and CD, patients in these subgroups subsequently experienced very different disease courses. A substantially higher incidence of frequently relapsing disease was experienced by those patients in the subgroup defined by elevated expression of genes involved in antigen-dependent T cell responses, including signaling initiated by both IL-7 and TCR ligation - pathways previously associated with prognosis in unrelated autoimmune diseases. No equivalent correlation was observed with CD4+ T cell gene expression. This suggests that the course of otherwise distinct autoimmune and inflammatory conditions may be influenced by common pathways and identifies what we believe to be the first biomarker that can predict prognosis in both UC and CD from diagnosis, a major step toward personalized therapy.


Proceedings of the National Academy of Sciences of the United States of America | 2010

A defunctioning polymorphism in FCGR2B is associated with protection against malaria but susceptibility to systemic lupus erythematosus

Lisa C. Willcocks; Edward J. Carr; Heather A. Niederer; Tim F. Rayner; Thomas N. Williams; Wanling Yang; J. Anthony G. Scott; Britta C. Urban; Norbert Peshu; Timothy J. Vyse; Yu-Lung Lau; Paul A. Lyons; Kenneth Smith

Systemic lupus erythematosus (SLE) is a multisystem autoimmune disease more prevalent in people of African and Asian origin than Caucasian origin. FcγRIIb is an inhibitory Fc receptor with a critical role in immune regulation. Mouse data suggest that FcγRIIb deficiency increases susceptibility to autoimmune disease but protects against infection. We show that a SNP in human FCGR2B that abrogates receptor function is strongly associated with susceptibility to SLE in both Caucasians and Southeast Asians. The minor allele of this SNP is more common in Southeast Asians and Africans, populations from areas where malaria is endemic, than in Caucasians. We show that homozygosity for the minor allele is associated with substantial protection against severe malaria in an East African population (odds ratio = 0.56; P = 7.1 × 10−5). This protective effect against malaria may contribute to the higher frequency of this SNP and hence, SLE in Africans and Southeast Asians.


Human Molecular Genetics | 2010

Copy number, linkage disequilibrium and disease association in the FCGR locus

Heather A. Niederer; Lisa C. Willcocks; Tim F. Rayner; Wanling Yang; Yu-Lung Lau; Thomas N. Williams; J. Anthony G. Scott; Britta C. Urban; Norbert Peshu; Sarah J. Dunstan; Tran Tinh Hien; Nguyen Hoan Phu; Leonid Padyukov; Iva Gunnarsson; Elisabet Svenungsson; Caroline O. S. Savage; Richard A. Watts; Paul A. Lyons; David G. Clayton; Kenneth G. C. Smith

The response of a leukocyte to immune complexes (ICs) is modulated by receptors for the Fc region of IgG (FcγRs), and alterations in their affinity or function have been associated with risk of autoimmune diseases, including systemic lupus erythematosus (SLE). The low-affinity FcγR genomic locus is complex, containing regions of copy number variation (CNV) which can alter receptor expression and leukocyte responses to IgG. Combined paralogue ratio tests (PRTs) were used to distinguish three intervals within the FCGR locus which undergo CNV, and to determine FCGR gene copy number (CN). There were significant differences in FCGR3B and FCGR3A CNV profiles between Caucasian, East Asian and Kenyan populations. A previously noted association of low FCGR3B CN with SLE in Caucasians was supported [OR = 1.57 (1.08–2.27), P = 0.018], and replicated in Chinese [OR = 1.65 (1.25–2.18), P = 4 × 10−4]. There was no association of FCGR3B CNV with vasculitis, nor with malarial or bacterial infection. Linkage disequilibrium (LD) between multi-allelic FCGR3B CNV and SLE-associated SNPs in the FCGR locus was defined for the first time. Despite LD between FCGR3B CNV and a variant in FcγRIIB (I232T) which abolishes inhibitory function, both reduced CN of FCGR3B and homozygosity of the FcγRIIB-232T allele were individually strongly associated with SLE risk. Thus CN of FCGR3B, which controls IC responses and uptake by neutrophils, and variations in FCGR2B, which controls factors such as antibody production and macrophage activation, are important in SLE pathogenesis. Further interpretations of contributions to pathogenesis by FcγRs must be made in the context of LD involving CNV regions.

Collaboration


Dive into the Tim F. Rayner's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alvis Brazma

European Bioinformatics Institute

View shared research outputs
Top Co-Authors

Avatar

Anna Farne

European Bioinformatics Institute

View shared research outputs
Top Co-Authors

Avatar

Ele Holloway

European Bioinformatics Institute

View shared research outputs
Top Co-Authors

Avatar

Margus Lukk

University of Cambridge

View shared research outputs
Top Co-Authors

Avatar

Anjan Sharma

European Bioinformatics Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Helen Parkinson

European Bioinformatics Institute

View shared research outputs
Top Co-Authors

Avatar

Misha Kapushesky

European Bioinformatics Institute

View shared research outputs
Top Co-Authors

Avatar

Mohammadreza Shojatalab

European Bioinformatics Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge