Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tim J. Lynch is active.

Publication


Featured researches published by Tim J. Lynch.


The Plant Cell | 2000

The Arabidopsis Abscisic Acid Response Gene ABI5 Encodes a Basic Leucine Zipper Transcription Factor

Ruth R. Finkelstein; Tim J. Lynch

The Arabidopsis abscisic acid (ABA)–insensitive abi5 mutants have pleiotropic defects in ABA response, including decreased sensitivity to ABA inhibition of germination and altered expression of some ABA-regulated genes. We isolated the ABI5 gene by using a positional cloning approach and found that it encodes a member of the basic leucine zipper transcription factor family. The previously characterized abi5-1 allele encodes a protein that lacks the DNA binding and dimerization domains required for ABI5 function. Analyses of ABI5 expression provide evidence for ABA regulation, cross-regulation by other ABI genes, and possibly autoregulation. Comparison of seed and ABA-inducible vegetative gene expression in wild-type and abi5-1 plants indicates that ABI5 regulates a subset of late embryogenesis–abundant genes during both developmental stages.


The Plant Cell | 1998

The Arabidopsis Abscisic Acid Response Locus ABI4 Encodes an APETALA2 Domain Protein

Ruth R. Finkelstein; Ming Li Wang; Tim J. Lynch; Shashirekha Rao; Howard M. Goodman

Arabidopsis abscisic acid (ABA)–insensitive abi4 mutants have pleiotropic defects in seed development, including decreased sensitivity to ABA inhibition of germination and altered seed-specific gene expression. This phenotype is consistent with a role for ABI4 in regulating seed responses to ABA and/or seed-specific signals. We isolated the ABI4 gene by positional cloning and confirmed its identity by complementation analysis. The predicted protein product shows homology to a plant-specific family of transcriptional regulators characterized by a conserved DNA binding domain, the APETALA2 domain. The single mutant allele identified has a single base pair deletion, resulting in a frameshift that should disrupt the C-terminal half of the protein but leave the presumed DNA binding domain intact. Expression analyses showed that despite the seed-specific nature of the mutant phenotype, ABI4 expression is not seed specific.


Plant Molecular Biology | 2005

Redundant and distinct functions of the ABA response loci ABA- INSENSITIVE(ABI)5 and ABRE-BINDING FACTOR (ABF)3

Ruth R. Finkelstein; Srinivas S. L. Gampala; Tim J. Lynch; Terry L. Thomas; Christopher D. Rock

Abscisic acid-responsive gene expression is regulated by numerous transcription factors, including a subgroup of basic leucine zipper factors that bind to the conserved cis-acting sequences known as ABA-responsive elements. Although one of these factors, ABA-insensitive 5 (ABI5), was identified genetically, the paucity of genetic data for the other family members has left it unclear whether they perform unique functions or act redundantly to ABI5 or each other. To test for potential redundancy with ABI5, we identified the family members with most similar effects and interactions in transient expression systems (ABF3 and ABF1), then characterized loss-of-function lines for those loci. The abf1 and abf3 monogenic mutant lines had at most minimal effects on germination or seed-specific gene expression, but the enhanced ABA- and stress-resistance of abf3 abi5 double mutants revealed redundant action of these genes in multiple stress responses of seeds and seedlings. Although ABI5, ABF3, and ABF1 have some overlapping effects, they appear to antagonistically regulate each other’s expression at specific stages. Consequently, loss of any one factor may be partially compensated by increased expression of other family members.


The Plant Cell | 2004

The Arabidopsis thaliana ABSCISIC ACID-INSENSITIVE8 Locus Encodes a Novel Protein Mediating Abscisic Acid and Sugar Responses Essential for Growth

Inès Brocard-Gifford; Tim J. Lynch; M. Emily Garcia; Bhupinder Malhotra; Ruth R. Finkelstein

Abscisic acid (ABA) regulates many aspects of plant growth and development, yet many ABA response mutants present only subtle phenotypic defects, especially in the absence of stress. By contrast, the ABA-insensitive8 (abi8) mutant, isolated on the basis of ABA-resistant germination, also displays severely stunted growth, defective stomatal regulation, altered ABA-responsive gene expression, delayed flowering, and male sterility. The stunted growth of the mutant is not rescued by gibberellin, brassinosteroid, or indoleacetic acid application and is not attributable to excessive ethylene response, but supplementing the medium with Glc improves viability and root growth. In addition to exhibiting Glc-dependent growth, reflecting decreased expression of sugar-mobilizing enzymes, abi8 mutants are resistant to Glc levels that induce developmental arrest of wild-type seedlings. Studies of genetic interactions demonstrate that ABA hypersensitivity conferred by the ABA-hypersensitive1 mutation or overexpression of ABI3 or ABI5 does not suppress the dwarfing and Glc dependence caused by abi8 but partially suppresses ABA-resistant germination. By contrast, the ABA-resistant germination of abi8 is epistatic to the hypersensitivity caused by ethylene-insensitive2 (ein2) and ein3 mutations, yet ABI8 appears to act in a distinct Glc response pathway from these EIN loci. ABI8 encodes a protein with no domains of known function but belongs to a small plant-specific protein family. Database searches indicate that it is allelic to two dwarf mutants, elongation defective1 and kobito1, previously shown to disrupt cell elongation, cellulose synthesis, vascular differentiation, and root meristem maintenance. The cell wall defects appear to be a secondary effect of the mutations because Glc treatment restores root growth and vascular differentiation but not cell elongation. Although the ABI8 transcript accumulates in all tested plant organs in both wild-type and ABA response mutants, an ABI8-β-glucuronidase fusion protein is localized primarily to the elongation zone of roots, suggesting substantial post-transcriptional regulation of ABI8 accumulation. This localization pattern is sufficient to complement the mutation, indicating that ABI8 acts either at very low concentrations or over long distances within the plant body.


Plant Molecular Biology | 2008

A small plant-specific protein family of ABI five binding proteins (AFPs) regulates stress response in germinating Arabidopsis seeds and seedlings

Mary Emily Garcia; Tim J. Lynch; Julian Peeters; Chris Snowden; Ruth R. Finkelstein

The transcription factor ABA-Insensitive5 (ABI5) is a key regulator of ABA signaling and stress response in Arabidopsis seeds and seedlings. Potential ABI5-interacting proteins were identified by a yeast two-hybrid screen; the most prevalent interactors were a family of four highly conserved plant-specific proteins with no domains of known function, but homology to a previously characterized ABI Five Binding Protein (AFP). This study compares expression and function of the family members. The AFPs are induced by ABA and/or dehydrating stresses in young seedlings, but the developmental timing of their induction differs. Mutations in AFP1 or AFP2 result in increased sensitivity to ABA and salt, whereas afp4 mutants are mildly ABA-resistant. AFP2, like AFP1, acts epistatically to ABI5. Reduced germination or seedling growth of the mutants under stress correlates with a higher level of ABI5 protein when compared to wild-type seedlings, but it is not clear whether this is a cause or effect of the reduced growth. Although both ABI5 and the AFPs are ABA-induced, the ABI5:AFP ratio increases at high ABA concentrations, maintaining growth inhibition under severe stress. An AFP2:GFP fusion, which complements the afp2 mutation, is nuclear-localized in seedlings exposed to stress, but becomes delocalized before being degraded following removal of stress. The AFPs may also interact to varying extents with many ABI5-related bZIP transcription factors. This study suggests that germination and seedling growth are regulated by antagonistic interactions among at least two functionally redundant families, the AFPs and the ABI5-related proteins, providing a mechanism to fine-tune seedling stress responses.


Journal of Experimental Botany | 2011

Accumulation of the transcription factor ABA-insensitive (ABI)4 is tightly regulated post-transcriptionally

Ruth R. Finkelstein; Tim J. Lynch; Wendy Reeves; Michelle Petitfils; Mike Mostachetti

ABA-INSENSITIVE (ABI)4 is a transcription factor implicated in response to ABA in maturing seeds, and seedling responses to ABA, salt, and sugar. Previous studies have shown that ABI4 transcripts are high in seeds and in seedlings exposed to high concentrations of glucose and, to a lesser extent, osmotic agents and ABA, but that transcript levels are very low through most of vegetative growth. This study examined ABI4 protein accumulation indirectly, using transgenic lines expressing fusions to GFP and GUS. The GFP fusions were active, but undetectable visually or immunologically. Comparison of transcript and activity levels for GUS expression showed that inclusion of the ABI4 coding sequence reduced the ratio of activity to transcript ∼40-fold when driven by the CaMV 35S promoter, and nearly 150-fold when controlled by the ABI4 promoter. At least part of this discrepancy is due to proteasomal degradation of ABI4, resulting in a half-life of 5–6 h for the ABI4–GUS fusion. Comparison of the spatial localization of transcripts and fusion proteins indicated that the protein preferentially accumulated in roots such that transcript and protein distribution had little similarity. The components mediating targeting to the proteasome or other mechanisms of spatial restriction have not yet been identified, but several domains of ABI4 appear to contribute to its instability.


Plant Molecular Biology | 2012

Direct interactions of ABA-insensitive(ABI)-clade protein phosphatase(PP)2Cs with calcium-dependent protein kinases and ABA response element-binding bZIPs may contribute to turning off ABA response

Tim J. Lynch; B. Joy Erickson; Ruth R. Finkelstein

Abscisic acid (ABA) signaling via the pyrabactin-resistant and related (PYR/PYL/RCAR) receptors begins with ABA-dependent inactivation of the ABA-insensitive(ABI)-clade protein phosphatases(PP)2Cs, thereby permitting phosphorylation and activation of the Snf1-related (SnRK)2 clade of protein kinases, and activation of their downstream targets such as ABA-response element binding basic leucine zipper (bZIP) transcription factors (ABF/AREB/ABI5 clade). Several of these are also activated by calcium–dependent protein kinases such as CPK11. Turning off ABA response requires turnover and/or inactivation of these transcription factors, which could result from their dephosphorylation. To address the hypothesis that the ABI-clade PP2Cs regulate the bZIPs directly, in addition to their indirect effects via SnRKs, we have assayed interactions between multiple members of the ABF/AREB clade and the PP2Cs by yeast two-hybrid, in vitro phosphatase, and bimolecular fluorescence complementation assays. In addition, we have expanded the list of documented specific interactions among these bZIP proteins and the kinases that could activate them and found that some PP2Cs can also interact directly with CPK11. These studies support specific interactions among kinases, phosphatases and transcription factors that are co-expressed in early seedling development.


Plant Molecular Biology | 2017

ABI5-binding proteins (AFPs) alter transcription of ABA-induced genes via a variety of interactions with chromatin modifiers

Tim J. Lynch; B. Joy Erickson; Dusty R. Miller; Ruth R. Finkelstein

Key messageOverexpression of ABI5/ABF binding proteins (AFPs) results in extreme ABA resistance of seeds via multiple mechanisms repressing ABA response, including interactions with histone deacetylases and the co-repressor TOPLESS.AbstractSeveral ABI5/ABF binding proteins (AFPs) inhibit ABA response, resulting in extreme ABA resistance in transgenic Arabidopsis overexpression lines, but their mechanism of action has remained obscure. By analogy to the related Novel Interactor of JAZ (NINJA) protein, it was suggested that the AFPs interact with the co-repressor TOPLESS to inhibit ABA-regulated gene expression. This study shows that the AFPs that inhibit ABA response have intrinsic repressor activity in a heterologous system, which does not depend on the domain involved in the interaction with TOPLESS. This domain is also not essential for repressing ABA response in transgenic plants, but does contribute to stronger ABA resistance. Additional interactions between some AFPs and histone deacetylase subunits were observed in yeast two-hybrid and bimolecular fluorescence assays, consistent with a more direct mechanism of AFP-mediated repression of gene expression. Chemical inhibition of histone deacetylase activity by trichostatin A suppressed AFP effects on a small fraction of the ABI5-regulated genes tested. Collectively, these results suggest that the AFPs participate in multiple mechanisms modulating ABA response, including both TOPLESS-dependent and -independent chromatin modification.


Plant Journal | 2001

Physical interactions between ABA response loci of Arabidopsis

Shingo Nakamura; Tim J. Lynch; Ruth R. Finkelstein


Plant Physiology | 2000

Regulation and function of the Arabidopsis ABA-insensitive4 gene in seed and abscisic acid response signaling networks.

Eva Söderman; Inès M. Brocard; Tim J. Lynch; Ruth R. Finkelstein

Collaboration


Dive into the Tim J. Lynch's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eduardo Orias

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wendy Reeves

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chris Snowden

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dawn Zeilinger

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge