Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tim J. Schuijt is active.

Publication


Featured researches published by Tim J. Schuijt.


Gut | 2016

The gut microbiota plays a protective role in the host defence against pneumococcal pneumonia

Tim J. Schuijt; Jacqueline M. Lankelma; Brendon P. Scicluna; Felipe de Sousa e Melo; Joris J. T. H. Roelofs; J. Daan de Boer; Aj Hoogendijk; Regina de Beer; Alex F. de Vos; Clara Belzer; Willem M. de Vos; Tom van der Poll; W. Joost Wiersinga

Objective Pneumonia accounts for more deaths than any other infectious disease worldwide. The intestinal microbiota supports local mucosal immunity and is increasingly recognised as an important modulator of the systemic immune system. The precise role of the gut microbiota in bacterial pneumonia, however, is unknown. Here, we investigate the function of the gut microbiota in the host defence against Streptococcus pneumoniae infections. Design We depleted the gut microbiota in C57BL/6 mice and subsequently infected them intranasally with S. pneumoniae. We then performed survival and faecal microbiota transplantation (FMT) experiments and measured parameters of inflammation and alveolar macrophage whole-genome responses. Results We found that the gut microbiota protects the host during pneumococcal pneumonia, as reflected by increased bacterial dissemination, inflammation, organ damage and mortality in microbiota-depleted mice compared with controls. FMT in gut microbiota-depleted mice led to a normalisation of pulmonary bacterial counts and tumour necrosis factor-α and interleukin-10 levels 6 h after pneumococcal infection. Whole-genome mapping of alveolar macrophages showed upregulation of metabolic pathways in the absence of a healthy gut microbiota. This upregulation correlated with an altered cellular responsiveness, reflected by a reduced responsiveness to lipopolysaccharide and lipoteichoic acid. Compared with controls, alveolar macrophages derived from gut microbiota-depleted mice showed a diminished capacity to phagocytose S. pneumoniae. Conclusions This study identifies the intestinal microbiota as a protective mediator during pneumococcal pneumonia. The gut microbiota enhances primary alveolar macrophage function. Novel therapeutic strategies could exploit the gut–lung axis in bacterial infections.


Trends in Parasitology | 2011

Lyme borreliosis vaccination: the facts, the challenge, the future

Tim J. Schuijt; Joppe W.R. Hovius; T. van der Poll; A.P. van Dam; Erol Fikrig

Lyme disease, or Lyme borreliosis, the most prevalent arthropod-borne disease in the Western world, is caused by spirochetes belonging to the Borrelia burgdorferi sensu lato group and is predominantly transmitted through Ixodes ticks. There is currently no vaccine available to prevent Lyme borreliosis in humans. Borrelia outer membrane proteins are reviewed which have been investigated as vaccine candidates. In addition, several tick proteins are discussed, on which anti-tick vaccines have been based, or are interesting future candidates, to prevent transmission of the spirochete from the tick vector to the mammalian host. Finally, novel vaccination strategies to prevent Lyme borreliosis are proposed, based on multiple Borrelia antigens, tick antigens or a combination of both Borrelia as well as tick antigens.


Infection and Immunity | 2008

The Tick Salivary Protein Salp15 Inhibits the Killing of Serum-Sensitive Borrelia burgdorferi Sensu Lato Isolates

Tim J. Schuijt; Joppe W. Hovius; Nathalie D van Burgel; Nandhini Ramamoorthi; Erol Fikrig; Alje P. van Dam

ABSTRACT Borrelia burgdorferi, the agent of Lyme disease, is transmitted by ticks. During transmission from the tick to the host, spirochetes are delivered with tick saliva, which contains the salivary protein Salp15. Salp15 has been shown to protect spirochetes against B. burgdorferi-specific antibodies. We now show that Salp15 from both Ixodes ricinus and Ixodes scapularis protects serum-sensitive isolates of Borrelia burgdorferi sensu lato against complement-mediated killing. I. ricinus Salp15 showed strong protective effects compared to those of I. scapularis Salp15. Deposition of terminal C5b to C9 (one molecule each of C5b, C6, C7, and C8 and one or more molecules of C9) complement complexes, part of the membrane attack complex, on the surface of B. burgdorferi was inhibited in the presence of Salp15. In the presence of normal human serum, serum-sensitive Borrelia burgdorferi requires protection against complement-mediated killing, which is provided, at least in part, by the binding to the tick salivary protein Salp15.


Trends in Microbiology | 2013

The intestinal microbiota and host immune interactions in the critically ill

Tim J. Schuijt; Tom van der Poll; Willem M. de Vos; W. Joost Wiersinga

The gastrointestinal tract harbors a complex population of microbes that play a fundamental role in the development of the immune system and human health. Besides an important local contribution in the host defense against infections, it has become increasingly clear that intestinal bacteria also modulate immune responses at systemic sites. These new insights can be of profound clinical relevance especially for intensive care medicine where the majority of patients are treated with antibiotics, which have pervasive and long-term effects on the intestinal microbiota. Moreover, considerable progress has been made in defining the role of the intestinal microbiota in both health and disease. In this review, we highlight these aspects and focus on recent key findings addressing the role of intestinal microbiota in antimicrobial defense mechanisms and its impact on intestinal homeostasis in the critically ill.


The Journal of Infectious Diseases | 2008

Preferential protection of Borrelia burgdorferi sensu stricto by a Salp15 homologue in Ixodes ricinus saliva.

Joppe W.R. Hovius; Tim J. Schuijt; K. de Groot; Joris J. T. H. Roelofs; G. A. Oei; J. A. Marquart; R. de Beer; C. van't Veer; T. van der Poll; Nandhini Ramamoorthi; Erol Fikrig; A.P. van Dam

BACKGROUND Ixodes ticks are the main vectors for Borrelia burgdorferi sensu lato. In the United States, B. burgdorferi is the sole causative agent of Lyme borreliosis and is transmitted by Ixodes scapularis. In Europe, 3 Borrelia species-B. burgdorferi, B. garinii, and B. afzelii-are prevalent, which are transmitted by Ixodes ricinus. The I. scapularis salivary protein Salp15 has been shown to bind to B. burgdorferi outer surface protein (Osp) C, protecting the spirochete from antibody-mediated killing. METHODS AND RESULTS We recently identified a Salp15 homologue in I. ricinus, Salp15 Iric-1. Here, we have demonstrated, by solid-phase overlays, enzyme-linked immunosorbent assay, and surface plasmon resonance, that Salp15 Iric-1 binds to B. burgdorferi OspC. Importantly, this binding protected the spirochete from antibody-mediated killing in vitro and in vivo; immune mice rechallenged with B. burgdorferi preincubated with Salp15 Iric-1 displayed significantly higher Borrelia numbers and more severe carditis, compared with control mice. Furthermore, Salp15 Iric-1 was capable of binding to OspC from B. garinii and B. afzelii, but these Borrelia species were not protected from antibody-mediated killing. CONCLUSIONS Salp15 Iric-1 interacts with all European Borrelia species but differentially protects B. burgdorferi from antibody-mediated killing, putatively giving this Borrelia species a survival advantage in nature.


PLOS ONE | 2011

Identification and Characterization of Ixodes scapularis Antigens That Elicit Tick Immunity Using Yeast Surface Display

Tim J. Schuijt; Sukanya Narasimhan; Sirlei Daffre; Kathleen DePonte; Joppe W. Hovius; Cornelis van 't Veer; Tom van der Poll; Kamran Bakhtiari; Joost C. M. Meijers; Eric T. Boder; Alje P. van Dam; Erol Fikrig

Repeated exposure of rabbits and other animals to ticks results in acquired resistance or immunity to subsequent tick bites and is partially elicited by antibodies directed against tick antigens. In this study we demonstrate the utility of a yeast surface display approach to identify tick salivary antigens that react with tick-immune serum. We constructed an Ixodes scapularis nymphal salivary gland yeast surface display library and screened the library with nymph-immune rabbit sera and identified five salivary antigens. Four of these proteins, designated P8, P19, P23 and P32, had a predicted signal sequence. We generated recombinant (r) P8, P19 and P23 in a Drosophila expression system for functional and immunization studies. rP8 showed anti-complement activity and rP23 demonstrated anti-coagulant activity. Ixodes scapularis feeding was significantly impaired when nymphs were fed on rabbits immunized with a cocktail of rP8, rP19 and rP23, a hall mark of tick-immunity. These studies also suggest that these antigens may serve as potential vaccine candidates to thwart tick feeding.


Trends in Parasitology | 2013

Complement evasion by Borrelia burgdorferi: it takes three to tango

Steven W. de Taeye; Lieselotte Kreuk; Alje P. van Dam; Joppe W.R. Hovius; Tim J. Schuijt

The complement system is one of the major innate defense mechanisms Borrelia burgdorferi sensu lato has to overcome to establish an infection of mammalian hosts and to cause Lyme borreliosis in humans. Borrelia prevents complement-mediated killing during host colonization through (i) recruitment of host complement regulators by Borrelia, (ii) evasion mechanisms by Borrelia itself, and (iii) exploitation of tick proteins by Borrelia. These interactions with complement can be host species-specific. This review provides an overview of interactions between Borrelia, tick, and host leading to evasion of complement-mediated killing.


Infection and Immunity | 2011

Antialarmin Effect of Tick Saliva during the Transmission of Lyme Disease

Claire Marchal; Frédéric Schramm; Aurélie Kern; Benjamin J. Luft; Xiaohua Yang; Tim J. Schuijt; Joppe W. Hovius; Benoît Jaulhac; Nathalie Boulanger

ABSTRACT Tick saliva has potent immunomodulatory properties. In arthropod-borne diseases, this effect is largely used by microorganisms to increase their pathogenicity and to evade host immune responses. We show that in Lyme borreliosis, tick salivary gland extract and a tick saliva protein, Salp15, inhibit in vitro keratinocyte inflammation induced by Borrelia burgdorferi sensu stricto or by the major outer surface lipoprotein of Borrelia, OspC. Chemokines (interleukin-8 [IL-8] and monocyte chemoattractant protein 1 [MCP-1]) and several antimicrobial peptides (defensins, cathelicidin, psoriasin, and RNase 7) were downregulated. Interestingly, antimicrobial peptides (AMPs) transiently inhibited bacterial motility but did not kill the organisms when tested in vitro. We conclude that tick saliva affects the chemotactic properties of chemokines and AMPs on immune cells and has an antialarmin effect on human primary keratinocytes. Alarmins are mediators that mobilize and activate antigen-presenting cells. Inhibition of cutaneous innate immunity and of the migration of immune cells to the site of the tick bite ensures a favorable environment for Borrelia. The bacterium can then multiply locally and, subsequently, disseminate to the target organs, including joints, heart, and the central nervous system.


Circulation | 2013

Factor Xa Activation of Factor V is of Paramount Importance in Initiating the Coagulation System: Lessons from a Tick Salivary Protein

Tim J. Schuijt; Kamran Bakhtiari; Sirlei Daffre; Kathleen DePonte; Simone J.H. Wielders; J. Arnoud Marquart; Joppe W. Hovius; Tom van der Poll; Erol Fikrig; Matthew W. Bunce; Rodney M. Camire; Gerry A. F. Nicolaes; Joost C. M. Meijers; Cornelis van 't Veer

Background— Generation of active procoagulant cofactor factor Va (FVa) and its subsequent association with the enzyme activated factor X (FXa) to form the prothrombinase complex is a pivotal initial event in blood coagulation and has been the subject of investigative effort, speculation, and controversy. The current paradigm assumes that FV activation is initiated by limited proteolysis by traces of (meizo) thrombin. Methods and Results— Recombinant tick salivary protein TIX-5 was produced and anticoagulant properties were studied with the use of plasma, whole blood, and purified systems. Here, we report that TIX-5 specifically inhibits FXa-mediated FV activation involving the B domain of FV and show that FXa activation of FV is pivotal for plasma and blood clotting. Accordingly, tick feeding is impaired on TIX-5 immune rabbits, displaying the in vivo importance of TIX-5. Conclusions— Our data elucidate a unique molecular mechanism by which ticks inhibit the host’s coagulation system. From our data, we propose a revised blood coagulation scheme in which direct FXa-mediated FV activation occurs in the initiation phase during which thrombin-mediated FV activation is restrained by fibrinogen and inhibitors.


Journal of Molecular Medicine | 2015

Complement evasion by Bordetella pertussis: implications for improving current vaccines

Ilse Jongerius; Tim J. Schuijt; Frits R. Mooi; Elena Pinelli

Bordetella pertussis causes whooping cough or pertussis, a highly contagious disease of the respiratory tract. Despite high vaccination coverage, reported cases of pertussis are rising worldwide and it has become clear that the current vaccines must be improved. In addition to the well-known protective role of antibodies and T cells during B. pertussis infection, innate immune responses such as the complement system play an essential role in B. pertussis killing. In order to evade this complement activation and colonize the human host, B. pertussis expresses several molecules that inhibit complement activation. Interestingly, one of the known complement evasion proteins, autotransporter Vag8, is highly expressed in the recently emerged B. pertussis isolates. Here, we describe the current knowledge on how B. pertussis evades complement-mediated killing. In addition, we compare this to complement evasion strategies used by other bacterial species. Finally, we discuss the consequences of complement evasion by B. pertussis on adaptive immunity and how identification of the bacterial molecules and the mechanisms involved in complement evasion might help improve pertussis vaccines.

Collaboration


Dive into the Tim J. Schuijt's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sirlei Daffre

University of São Paulo

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Matthew W. Bunce

Children's Hospital of Philadelphia

View shared research outputs
Top Co-Authors

Avatar

Rodney M. Camire

Children's Hospital of Philadelphia

View shared research outputs
Researchain Logo
Decentralizing Knowledge