Tim J. Schulz
Harvard University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Tim J. Schulz.
Nature | 2008
Yu-Hua Tseng; Efi Kokkotou; Tim J. Schulz; Tian Lian Huang; Jonathon N. Winnay; Cullen M. Taniguchi; Thien T. Tran; Ryo Suzuki; Daniel O. Espinoza; Yuji Yamamoto; Molly J. Ahrens; Andrew T. Dudley; Andrew W. Norris; Rohit N. Kulkarni; C. Ronald Kahn
Adipose tissue is central to the regulation of energy balance. Two functionally different types of fat are present in mammals: white adipose tissue, the primary site of triglyceride storage, and brown adipose tissue, which is specialized in energy expenditure and can counteract obesity. Factors that specify the developmental fate and function of white and brown adipose tissue remain poorly understood. Here we demonstrate that whereas some members of the family of bone morphogenetic proteins (BMPs) support white adipocyte differentiation, BMP7 singularly promotes differentiation of brown preadipocytes even in the absence of the normally required hormonal induction cocktail. BMP7 activates a full program of brown adipogenesis including induction of early regulators of brown fat fate PRDM16 (PR-domain-containing 16; ref. 4) and PGC-1α (peroxisome proliferator-activated receptor-γ (PPARγ) coactivator-1α; ref. 5), increased expression of the brown-fat-defining marker uncoupling protein 1 (UCP1) and adipogenic transcription factors PPARγ and CCAAT/enhancer-binding proteins (C/EBPs), and induction of mitochondrial biogenesis via p38 mitogen-activated protein (MAP) kinase-(also known as Mapk14) and PGC-1-dependent pathways. Moreover, BMP7 triggers commitment of mesenchymal progenitor cells to a brown adipocyte lineage, and implantation of these cells into nude mice results in development of adipose tissue containing mostly brown adipocytes. Bmp7 knockout embryos show a marked paucity of brown fat and an almost complete absence of UCP1. Adenoviral-mediated expression of BMP7 in mice results in a significant increase in brown, but not white, fat mass and leads to an increase in energy expenditure and a reduction in weight gain. These data reveal an important role of BMP7 in promoting brown adipocyte differentiation and thermogenesis in vivo and in vitro, and provide a potential new therapeutic approach for the treatment of obesity.
Nature Medicine | 2013
Aaron M. Cypess; Andrew P. White; Cecile Vernochet; Tim J. Schulz; Ruidan Xue; Christina A. Sass; Tian Liang Huang; Carla Roberts-Toler; Lauren S. Weiner; Cathy Sze; Aron T. Chacko; Laura N Deschamps; Lindsay M. Herder; Nathan Truchan; Allison L Glasgow; Ashley R. Holman; Alina Gavrila; Per-Olof Hasselgren; Marcelo A. Mori; Michael Molla; Yu-Hua Tseng
The imbalance between energy intake and expenditure is the underlying cause of the current obesity and diabetes pandemics. Central to these pathologies is the fat depot: white adipose tissue (WAT) stores excess calories, and brown adipose tissue (BAT) consumes fuel for thermogenesis using tissue-specific uncoupling protein 1 (UCP1). BAT was once thought to have a functional role in rodents and human infants only, but it has been recently shown that in response to mild cold exposure, adult human BAT consumes more glucose per gram than any other tissue. In addition to this nonshivering thermogenesis, human BAT may also combat weight gain by becoming more active in the setting of increased whole-body energy intake. This phenomenon of BAT-mediated diet-induced thermogenesis has been observed in rodents and suggests that activation of human BAT could be used as a safe treatment for obesity and metabolic dysregulation. In this study, we isolated anatomically defined neck fat from adult human volunteers and compared its gene expression, differentiation capacity and basal oxygen consumption to different mouse adipose depots. Although the properties of human neck fat vary substantially between individuals, some human samples share many similarities with classical, also called constitutive, rodent BAT.
Proceedings of the National Academy of Sciences of the United States of America | 2011
Tim J. Schulz; Tian Lian Huang; Thien T. Tran; Hongbin Zhang; Kristy L. Townsend; Jennifer L. Shadrach; Massimiliano Cerletti; Lindsay E. McDougall; Nino Giorgadze; Tamara Tchkonia; Denis Schrier; Dean Falb; James L. Kirkland; Amy J. Wagers; Yu-Hua Tseng
Brown fat is specialized for energy expenditure and has therefore been proposed to function as a defense against obesity. Despite recent advances in delineating the transcriptional regulation of brown adipocyte differentiation, cellular lineage specification and developmental cues specifying brown-fat cell fate remain poorly understood. In this study, we identify and isolate a subpopulation of adipogenic progenitors (Sca-1+/CD45−/Mac1−; referred to as Sca-1+ progenitor cells, ScaPCs) residing in murine brown fat, white fat, and skeletal muscle. ScaPCs derived from different tissues possess unique molecular expression signatures and adipogenic capacities. Importantly, although the ScaPCs from interscapular brown adipose tissue (BAT) are constitutively committed brown-fat progenitors, Sca-1+ cells from skeletal muscle and subcutaneous white fat are highly inducible to differentiate into brown-like adipocytes upon stimulation with bone morphogenetic protein 7 (BMP7). Consistent with these findings, human preadipocytes isolated from subcutaneous white fat also exhibit the greatest inducible capacity to become brown adipocytes compared with cells isolated from mesenteric or omental white fat. When muscle-resident ScaPCs are re-engrafted into skeletal muscle of syngeneic mice, BMP7-treated ScaPCs efficiently develop into adipose tissue with brown fat-specific characteristics. Importantly, ScaPCs from obesity-resistant mice exhibit markedly higher thermogenic capacity compared with cells isolated from obesity-prone mice. These data establish the molecular characteristics of tissue-resident adipose progenitors and demonstrate a dynamic interplay between these progenitors and inductive signals that act in concert to specify brown adipocyte development.
Nature | 2013
Tim J. Schulz; Ping Huang; Tian Lian Huang; Ruidan Xue; Lindsay E. McDougall; Kristy L. Townsend; Aaron M. Cypess; Yuji Mishina; Emanuela Gussoni; Yu-Hua Tseng
Maintenance of body temperature is essential for the survival of homeotherms. Brown adipose tissue (BAT) is a specialized fat tissue that is dedicated to thermoregulation. Owing to its remarkable capacity to dissipate stored energy and its demonstrated presence in adult humans, BAT holds great promise for the treatment of obesity and metabolic syndrome. Rodent data suggest the existence of two types of brown fat cells: constitutive BAT (cBAT), which is of embryonic origin and anatomically located in the interscapular region of mice; and recruitable BAT (rBAT), which resides within white adipose tissue (WAT) and skeletal muscle, and has alternatively been called beige, brite or inducible BAT. Bone morphogenetic proteins (BMPs) regulate the formation and thermogenic activity of BAT. Here we use mouse models to provide evidence for a systemically active regulatory mechanism that controls whole-body BAT activity for thermoregulation and energy homeostasis. Genetic ablation of the type 1A BMP receptor (Bmpr1a) in brown adipogenic progenitor cells leads to a severe paucity of cBAT. This in turn increases sympathetic input to WAT, thereby promoting the formation of rBAT within white fat depots. This previously unknown compensatory mechanism, aimed at restoring total brown-fat-mediated thermogenic capacity in the body, is sufficient to maintain normal temperature homeostasis and resistance to diet-induced obesity. These data suggest an important physiological cross-talk between constitutive and recruitable brown fat cells. This sophisticated regulatory mechanism of body temperature may participate in the control of energy balance and metabolic disease.
Journal of Biological Chemistry | 2006
Tim J. Schulz; René Thierbach; Anja Voigt; Gunnar Drewes; Brun Mietzner; Pablo Steinberg; Andreas F.H. Pfeiffer; Michael Ristow
More than 80 years ago Otto Warburg suggested that cancer might be caused by a decrease in mitochondrial energy metabolism paralleled by an increase in glycolytic flux. In later years, it was shown that cancer cells exhibit multiple alterations in mitochondrial content, structure, function, and activity. We have stably overexpressed the Friedreich ataxia-associated protein frataxin in several colon cancer cell lines. These cells have increased oxidative metabolism, as shown by concurrent increases in aconitase activity, mitochondrial membrane potential, cellular respiration, and ATP content. Consistent with Warburgs hypothesis, we found that frataxin-overexpressing cells also have decreased growth rates and increased population doubling times, show inhibited colony formation capacity in soft agar assays, and exhibit a reduced capacity for tumor formation when injected into nude mice. Furthermore, overexpression of frataxin leads to an increased phosphorylation of the tumor suppressor p38 mitogen-activated protein kinase, as well as decreased phosphorylation of extracellular signal-regulated kinase. Taken together, these results support the view that an increase in oxidative metabolism induced by mitochondrial frataxin may inhibit cancer growth in mammals.
Diabetes | 2012
Yazmin Macotela; Brice Emanuelli; Marcelo A. Mori; Stephane Gesta; Tim J. Schulz; Yu-Hua Tseng; C. Ronald Kahn
Obesity and body fat distribution are important risk factors for the development of type 2 diabetes and metabolic syndrome. Evidence has accumulated that this risk is related to intrinsic differences in behavior of adipocytes in different fat depots. In the current study, we demonstrate that adipocyte precursor cells (APCs) isolated from visceral and subcutaneous white adipose depots of mice have distinct patterns of gene expression, differentiation potential, and response to environmental and genetic influences. APCs derived from subcutaneous fat differentiate well in the presence of classical induction cocktail, whereas those from visceral fat differentiate poorly but can be induced to differentiate by addition of bone morphogenetic protein (BMP)-2 or BMP-4. This difference correlates with major differences in gene expression signature between subcutaneous and visceral APCs. The number of APCs is higher in obesity-prone C57BL/6 mice than obesity-resistant 129 mice, and the number in both depots is increased by up to 270% by exposure of mice to high-fat diet. Thus, APCs from visceral and subcutaneous depots are dynamic populations, which have intrinsic differences in gene expression, differentiation properties, and responses to environmental/genetic factors. Regulation of these populations may provide a new target for the treatment and prevention of obesity and its metabolic complications.
Journal of Clinical Investigation | 2003
Michael Ristow; Hindrik Mulder; Doreen Pomplun; Tim J. Schulz; Katrin Müller-Schmehl; Anja Krause; Malin Fex; Hélène Puccio; Jörg Müller; Frank Isken; Joachim Spranger; Dirk Müller-Wieland; Mark A. Magnuson; Matthias Möhlig; Michel Koenig; Andreas F.H. Pfeiffer
Diabetes is caused by an absolute (type 1) or relative (type 2) deficiency of insulin-producing beta cells. We have disrupted expression of the mitochondrial protein frataxin selectively in pancreatic beta cells. Mice were born healthy but subsequently developed impaired glucose tolerance progressing to overt diabetes mellitus. These observations were explained by impairment of insulin secretion due to a loss of beta cell mass in knockout animals. This phenotype was preceded by elevated levels of reactive oxygen species in knockout islets, an increased frequency of apoptosis, and a decreased number of proliferating beta cells. Hence, disruption of the frataxin gene in pancreatic beta cells causes diabetes following cellular growth arrest and apoptosis, paralleled by an increase in reactive oxygen species in islets. These observations might provide insight into the deterioration of beta cell function observed in different subtypes of diabetes in humans.
Cytokine & Growth Factor Reviews | 2009
Tim J. Schulz; Yu-Hua Tseng
Bone morphogenetic proteins (BMPs) regulate many processes in embryonic development as well as in the maintenance of normal tissue function later in adult life. However, the role of this family of proteins in formation of adipose tissue has been underappreciated in the field of developmental biology. With the growing epidemic of obesity, improved knowledge of adipocyte development and function is urgently needed. Recently, there have been significant advances in understanding the role of different members of the BMP superfamily in control of adipocyte differentiation and systemic energy homeostasis. This review summarizes recent progress in understanding how BMPs specify adipose cell fate in stem/progenitor cells and their potential role in energy metabolism. We propose that BMPs provide instructive signals for adipose cell fate determination and regulate adipocyte function. These findings have opened up exciting opportunities for developing new therapeutic approaches for the treatment of obesity and its many associated metabolic disorders.
Nature Medicine | 2015
Ruidan Xue; Matthew D. Lynes; Jonathan M. Dreyfuss; Farnaz Shamsi; Tim J. Schulz; Hongbin Zhang; Tian Lian Huang; Kristy L. Townsend; Yiming Li; Hirokazu Takahashi; Lauren S. Weiner; Andrew P. White; Maureen Sherry Lynes; Lee L. Rubin; Laurie J. Goodyear; Aaron M. Cypess; Yu-Hua Tseng
Targeting brown adipose tissue (BAT) content or activity has therapeutic potential for treating obesity and the metabolic syndrome by increasing energy expenditure. Both inter- and intra-individual differences contribute to heterogeneity in human BAT and potentially to differential thermogenic capacity in human populations. Here, we demonstrated the generated clones of brown and white preadipocytes from human neck fat of four individuals and characterized their adipogenic differentiation and thermogenic function. Combining an uncoupling protein 1(UCP1) reporter system and expression profiling, we defined novel sets of gene signatures in human preadipocytes that could predict the thermogenic potential of the cells once they were maturated in culture. Knocking out the positive UCP1 regulators identified by this approach, PREX1 and EDNRB in brown preadipocytes using CRISPR/Cas9 markedly abolished the high level of UCP1 in brown adipocytes differentiated from the preadipocytes. Finally, we were able to prospectively isolate adipose progenitors with great thermogenic potential using cell surface marker CD29. These data provide new insights into the cellular heterogeneity in human fat and offer the identification of possible biomarkers of thermogenically competent preadipocytes.Targeting brown adipose tissue (BAT) content or activity has therapeutic potential for treating obesity and the metabolic syndrome by increasing energy expenditure. However, both inter- and intra-individual differences contribute to heterogeneity in human BAT and potentially to differential thermogenic capacity in human populations. Here we generated clones of brown and white preadipocytes from human neck fat and characterized their adipogenic and thermogenic differentiation. We combined an uncoupling protein 1 (UCP1) reporter system and expression profiling to define novel sets of gene signatures in human preadipocytes that could predict the thermogenic potential of the cells once they were maturated. Knocking out the positive UCP1 regulators, PREX1 and EDNRB, in brown preadipocytes using CRISPR-Cas9 markedly abolished the high level of UCP1 in brown adipocytes differentiated from the preadipocytes. Finally, we were able to prospectively isolate adipose progenitors with great thermogenic potential using the cell surface marker CD29. These data provide new insights into the cellular heterogeneity in human fat and offer potential biomarkers for identifying thermogenically competent preadipocytes.
Cell Stem Cell | 2017
Thomas H. Ambrosi; Antonio Scialdone; Antonia Graja; Sabrina Gohlke; Anne Marie Jank; Carla Bocian; Lena Woelk; Hua Fan; Darren W. Logan; Annette Schürmann; Luis R. Saraiva; Tim J. Schulz
Summary Aging and obesity induce ectopic adipocyte accumulation in bone marrow cavities. This process is thought to impair osteogenic and hematopoietic regeneration. Here we specify the cellular identities of the adipogenic and osteogenic lineages of the bone. While aging impairs the osteogenic lineage, high-fat diet feeding activates expansion of the adipogenic lineage, an effect that is significantly enhanced in aged animals. We further describe a mesenchymal sub-population with stem cell-like characteristics that gives rise to both lineages and, at the same time, acts as a principal component of the hematopoietic niche by promoting competitive repopulation following lethal irradiation. Conversely, bone-resident cells committed to the adipocytic lineage inhibit hematopoiesis and bone healing, potentially by producing excessive amounts of Dipeptidyl peptidase-4, a protease that is a target of diabetes therapies. These studies delineate the molecular identity of the bone-resident adipocytic lineage, and they establish its involvement in age-dependent dysfunction of bone and hematopoietic regeneration.