Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tim James Viney is active.

Publication


Featured researches published by Tim James Viney.


Science | 2010

Genetic Reactivation of Cone Photoreceptors Restores Visual Responses in Retinitis Pigmentosa

Volker Busskamp; Jens Duebel; D. Balya; Mathias Fradot; Tim James Viney; Sandra Siegert; Anna C. Groner; Erik Cabuy; Valérie Forster; Mathias W. Seeliger; Martin Biel; Peter Humphries; Michel Paques; Saddek Mohand-Said; Didier Trono; Karl Deisseroth; José-Alain Sahel; Serge Picaud; Botond Roska

Let There Be Light Retinitis pigmentosa, a disease that can result from a wide variety of genetic defects, causes degeneration of photoreceptor cells in the retina and leads to blindness. In the course of the disease, it is generally the rod photoreceptor cells that degenerate first. Cone photoreceptor cells may persist, but in a damaged and nonfunctional state. Busskamp et al. (p. 413, published online 24 June; see the cover; see the Perspective by Cepko) have now applied a gene therapy approach to mouse models of retinitis pigmentosa. Inducing expression of a bacterial light-activated ion pump, halorho dopsin, in the damaged cone cells improved visual responses in the diseased mouse retinas. Thus, it may be possible to rescue cone photoreceptors therapeutically, even after they have already been damaged. A bacterial ion pump rescues visual function in damaged cone-photoreceptor cells in mouse models of retinitis pigmentosa. Retinitis pigmentosa refers to a diverse group of hereditary diseases that lead to incurable blindness, affecting two million people worldwide. As a common pathology, rod photoreceptors die early, whereas light-insensitive, morphologically altered cone photoreceptors persist longer. It is unknown if these cones are accessible for therapeutic intervention. Here, we show that expression of archaebacterial halorhodopsin in light-insensitive cones can substitute for the native phototransduction cascade and restore light sensitivity in mouse models of retinitis pigmentosa. Resensitized photoreceptors activate all retinal cone pathways, drive sophisticated retinal circuit functions (including directional selectivity), activate cortical circuits, and mediate visually guided behaviors. Using human ex vivo retinas, we show that halorhodopsin can reactivate light-insensitive human photoreceptors. Finally, we identified blind patients with persisting, light-insensitive cones for potential halorhodopsin-based therapy.


Nature Neuroscience | 2009

Approach sensitivity in the retina processed by a multifunctional neural circuit

Thomas A. Münch; Rava Azeredo da Silveira; Sandra Siegert; Tim James Viney; Gautam B Awatramani; Botond Roska

The detection of approaching objects, such as looming predators, is necessary for survival. Which neurons and circuits mediate this function? We combined genetic labeling of cell types, two-photon microscopy, electrophysiology and theoretical modeling to address this question. We identify an approach-sensitive ganglion cell type in the mouse retina, resolve elements of its afferent neural circuit, and describe how these confer approach sensitivity on the ganglion cell. The circuits essential building block is a rapid inhibitory pathway: it selectively suppresses responses to non-approaching objects. This rapid inhibitory pathway, which includes AII amacrine cells connected to bipolar cells through electrical synapses, was previously described in the context of night-time vision. In the daytime conditions of our experiments, the same pathway conveys signals in the reverse direction. The dual use of a neural pathway in different physiological conditions illustrates the efficiency with which several functions can be accommodated in a single circuit.


Current Biology | 2007

Local Retinal Circuits of Melanopsin-Containing Ganglion Cells Identified by Transsynaptic Viral Tracing

Tim James Viney; Kamill Balint; Daniel Hillier; Sandra Siegert; Zsolt Boldogkoi; Lynn W. Enquist; Markus Meister; Constance L. Cepko; Botond Roska

Intrinsically photosensitive melanopsin-containing retinal ganglion cells (ipRGCs) control important physiological processes, including the circadian rhythm, the pupillary reflex, and the suppression of locomotor behavior (reviewed in [1]). ipRGCs are also activated by classical photoreceptors, the rods and cones, through local retinal circuits [2, 3]. ipRGCs can be transsynaptically labeled through the pupillary-reflex circuit with the derivatives of the Bartha strain of the alphaherpesvirus pseudorabies virus(PRV) [4, 5] that express GFP [6-12]. Bartha-strain derivatives spread only in the retrograde direction [13]. There is evidence that infected cells function normally for a while during GFP expression [7]. Here we combine transsynaptic PRV labeling, two-photon laser microscopy, and electrophysiological techniques to trace the local circuit of different ipRGC subtypes in the mouse retina and record light-evoked activity from the transsynaptically labeled ganglion cells. First, we show that ipRGCs are connected by monostratified amacrine cells that provide strong inhibition from classical-photoreceptor-driven circuits. Second, we show evidence that dopaminergic interplexiform cells are synaptically connected to ipRGCs. The latter finding provides a circuitry link between light-dark adaptation and ipRGC function.


Nature Neuroscience | 2012

Behavior-dependent specialization of identified hippocampal interneurons

Damien Lapray; Bálint Lasztóczi; Michael Lagler; Tim James Viney; Linda Katona; Ornella Valenti; Katja Hartwich; Zsolt Borhegyi; Peter Somogyi; Thomas Klausberger

A large variety of GABAergic interneurons control information processing in the hippocampal circuits governing the formation of neuronal representations. Whether distinct hippocampal interneuron types contribute differentially to information processing during behavior is not known. We employed a new technique for recording and labeling interneurons and pyramidal cells in drug-free, freely moving rats. Recorded parvalbumin-expressing basket interneurons innervated somata and proximal pyramidal cell dendrites, whereas nitric oxide synthase– and neuropeptide Y–expressing ivy cells provided synaptic and extrasynaptic dendritic modulation. Basket and ivy cells showed distinct spike-timing dynamics, firing at different rates and times during theta and ripple oscillations. Basket, but not ivy, cells changed their firing rates during movement, sleep and quiet wakefulness, suggesting that basket cells coordinate cell assemblies in a behavioral state–contingent manner, whereas persistently firing ivy cells might control network excitability and homeostasis. Different interneuron types provide GABA to specific subcellular domains at defined times and rates, thereby differentially controlling network activity during behavior.


Nature Methods | 2009

Genetically timed, activity-sensor and rainbow transsynaptic viral tools

Zsolt Boldogk odblac; Kamill Balint; Gautam B Awatramani; D. Balya; Volker Busskamp; Tim James Viney; Pamela Sarita Lagali; Jens Duebel; Emese Pásti; Dóra Tombácz; Judit S Tóth; Irma F Takács; Brigitte Gross Scherf; Botond Roska

We developed retrograde, transsynaptic pseudorabies viruses (PRVs) with genetically encoded activity sensors that optically report the activity of connected neurons among spatially intermingled neurons in the brain. Next we engineered PRVs to express two differentially colored fluorescent proteins in a time-shifted manner to define a time period early after infection to investigate neural activity. Finally we used multiple-colored PRVs to differentiate and dissect the complex architecture of brain regions.


Nature Neuroscience | 2013

Network state-dependent inhibition of identified hippocampal CA3 axo-axonic cells in vivo.

Tim James Viney; Bálint Lasztóczi; Linda Katona; Michael G. Crump; John J. Tukker; Thomas Klausberger; Peter Somogyi

Hippocampal sharp waves are population discharges initiated by an unknown mechanism in pyramidal cell networks of CA3. Axo-axonic cells (AACs) regulate action potential generation through GABAergic synapses on the axon initial segment. We found that CA3 AACs in anesthetized rats and AACs in freely moving rats stopped firing during sharp waves, when pyramidal cells fire most. AACs fired strongly and rhythmically around the peak of theta oscillations, when pyramidal cells fire at low probability. Distinguishing AACs from other parvalbumin-expressing interneurons by their lack of detectable SATB1 transcription factor immunoreactivity, we discovered a somatic GABAergic input originating from the medial septum that preferentially targets AACs. We recorded septo-hippocampal GABAergic cells that were activated during hippocampal sharp waves and projected to CA3. We hypothesize that inhibition of AACs, and the resulting subcellular redistribution of inhibition from the axon initial segment to other pyramidal cell domains, is a necessary condition for the emergence of sharp waves promoting memory consolidation.


Neuron | 2014

Sleep and Movement Differentiates Actions of Two Types of Somatostatin-Expressing GABAergic Interneuron in Rat Hippocampus.

Linda Katona; Damien Lapray; Tim James Viney; Abderrahim Oulhaj; Zsolt Borhegyi; Benjamin R. Micklem; Thomas Klausberger; Peter Somogyi

Summary Neuropeptides acting on pre- and postsynaptic receptors are coreleased with GABA by interneurons including bistratified and O-LM cells, both expressing somatostatin but innervating segregated dendritic domains of pyramidal cells. Neuropeptide release requires high-frequency action potentials, but the firing patterns of most peptide/GABA-releasing interneurons during behavior are unknown. We show that behavioral and network states differentiate the activities of bistratified and O-LM cells in freely moving rats. Bistratified cells fire at higher rates during sleep than O-LM cells and, unlike O-LM cells, strongly increase spiking during sharp wave-associated ripples (SWRs). In contrast, O-LM interneurons decrease firing during sleep relative to awake states and are mostly inhibited during SWRs. During movement, both cell types fire cooperatively at the troughs of theta oscillations but with different frequencies. Somatostatin and GABA are differentially released to distinct dendritic zones of CA1 pyramidal cells during sleep and wakefulness to coordinate segregated glutamatergic inputs from entorhinal cortex and CA3.


Nature Neuroscience | 2015

Determinants of different deep and superficial CA1 pyramidal cell dynamics during sharp-wave ripples

Manuel Valero; Elena Cid; Robert G. Averkin; Juan Aguilar; Alberto Sanchez-Aguilera; Tim James Viney; Daniel Gomez-Dominguez; Elisa Bellistri; Liset Menendez de la Prida

Sharp-wave ripples represent a prominent synchronous activity pattern in the mammalian hippocampus during sleep and immobility. GABAergic interneuronal types are silenced or fire during these events, but the mechanism of pyramidal cell (PC) participation remains elusive. We found opposite membrane polarization of deep (closer to stratum oriens) and superficial (closer to stratum radiatum) rat CA1 PCs during sharp-wave ripples. Using sharp and multi-site recordings in combination with neurochemical profiling, we observed a predominant inhibitory drive of deep calbindin (CB)-immunonegative PCs that contrasts with a prominent depolarization of superficial CB-immunopositive PCs. Biased contribution of perisomatic GABAergic inputs, together with suppression of CA2 PCs, may explain the selection of CA1 PCs during sharp-wave ripples. A deep-superficial gradient interacted with behavioral and spatial effects to determine cell participation during sleep and awake sharp-wave ripples in freely moving rats. Thus, the firing dynamics of hippocampal PCs are exquisitely controlled at subcellular and microcircuit levels in a cell type–selective manner.


Philosophical Transactions of the Royal Society B | 2013

Temporal redistribution of inhibition over neuronal subcellular domains underlies state-dependent rhythmic change of excitability in the hippocampus.

Peter Somogyi; Linda Katona; Thomas Klausberger; Bálint Lasztóczi; Tim James Viney

The behaviour-contingent rhythmic synchronization of neuronal activity is reported by local field potential oscillations in the theta, gamma and sharp wave-related ripple (SWR) frequency ranges. In the hippocampus, pyramidal cell assemblies representing temporal sequences are coordinated by GABAergic interneurons selectively innervating specific postsynaptic domains, and discharging phase locked to network oscillations. We compare the cellular network dynamics in the CA1 and CA3 areas recorded with or without anaesthesia. All parts of pyramidal cells, except the axon initial segment, receive GABA from multiple interneuron types, each with distinct firing dynamics. The axon initial segment is exclusively innervated by axo-axonic cells, preferentially firing after the peak of the pyramidal layer theta cycle, when pyramidal cells are least active. Axo-axonic cells are inhibited during SWRs, when many pyramidal cells fire synchronously. This dual inverse correlation demonstrates the key inhibitory role of axo-axonic cells. Parvalbumin-expressing basket cells fire phase locked to field gamma activity in both CA1 and CA3, and also strongly increase firing during SWRs, together with dendrite-innervating bistratified cells, phasing pyramidal cell discharge. Subcellular domain-specific GABAergic innervation probably developed for the coordination of multiple glutamatergic inputs on different parts of pyramidal cells through the temporally distinct activity of GABAergic interneurons, which differentially change their firing during different network states.


Journal of Biological Chemistry | 2004

Regulation of the Cell-specific Calcitonin/Calcitonin Gene-related Peptide Enhancer by USF and the Foxa2 Forkhead Protein

Tim James Viney; Thomas W. Schmidt; William Gierasch; A. Wahed Sattar; Ryan E. Yaggie; Adisa Kuburas; John P. Quinn; Judy M. Coulson; Andrew F. Russo

An 18-bp enhancer controls cell-specific expression of the calcitonin/calcitonin gene-related peptide gene. The enhancer is bound by a heterodimer of the bHLH-Zip protein USF-1 and -2 and a cell-specific factor from thyroid C cell lines. In this report we have identified the cell-specific factor as the forkhead protein Foxa2 (previously HNF-3β). Binding of Foxa2 to the 18-bp enhancer was demonstrated using electrophoretic mobility shift assays. The cell-specific DNA-protein complex was selectively competed by a series of Foxa2 DNA binding sites, and the addition of Foxa2 antiserum supershifted the complex. Likewise, a complex similar to that seen with extracts from thyroid C cell lines was generated using an extract from heterologous cells expressing recombinant Foxa2. Interestingly, overexpression of Foxa2 activated the 18-bp enhancer in heterologous cells but only in the presence of the adjacent helix-loop-helix motif. Likewise, coexpression of USF proteins with Foxa2 yielded greater activation than by Foxa2 alone. Unexpectedly, Foxa2 overexpression repressed activity in the CA77 thyroid C cell line, suggesting that Foxa2 may interact with additional cofactors. The stimulatory role of Foxa2 at the calcitonin/calcitonin gene-related peptide gene enhancer was confirmed by short interfering RNA-mediated knockdown of Foxa2. As seen with Foxa2 overexpression, the effect of Foxa2 knockdown also required the adjacent helix-loop-helix motif. These results provide the first evidence for combinatorial control of gene expression by bHLH-Zip and forkhead proteins.

Collaboration


Dive into the Tim James Viney's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Thomas Klausberger

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar

Botond Roska

Friedrich Miescher Institute for Biomedical Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zsolt Borhegyi

Hungarian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Bálint Lasztóczi

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar

Sandra Siegert

Friedrich Miescher Institute for Biomedical Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge